Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Two types of chemical reactions  



1.1  Exothermic  





1.2  Endothermic  







2 Energy release  





3 Examples  





4 Implications for chemical reactions  





5 See also  





6 References  





7 External links  














Exothermic process






العربية
Bosanski
Dansk
Ελληνικά
Español
فارسی
Gaeilge
ि
Hrvatski
Italiano
Қазақша
Kreyòl ayisyen
Lietuvių
Nederlands
Português
Română
Simple English
ி
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Exothermic)

Explosions are some of the most violent exothermic reactions.

Inthermodynamics, an exothermic process (from Ancient Greek έξω (éxō) 'outward', and θερμικός (thermikós) 'thermal')[1] is a thermodynamic processorreaction that releases energy from the system to its surroundings,[2] usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e.g. a battery), or sound (e.g. explosion heard when burning hydrogen). The term exothermic was first coined by 19th-century French chemist Marcellin Berthelot.[3]

The opposite of an exothermic process is an endothermic process, one that absorbs energy, usually in the form of heat.[2] The concept is frequently applied in the physical sciencestochemical reactions where chemical bond energy is converted to thermal energy (heat).

Two types of chemical reactions[edit]

Exothermic and endothermic describe two types of chemical reactions or systems found in nature, as follows:

Exothermic[edit]

An exothermic reaction occurs when heat is released to the surroundings. According to the IUPAC, an exothermic reaction is "a reaction for which the overall standard enthalpy change ΔH⚬ is negative".[4] Some examples of exothermic process are fuel combustion, condensation and nuclear fission,[5] which is used in nuclear power plants to release large amounts of energy.[6]

Endothermic[edit]

In an endothermic reaction or system, energy is taken from the surroundings in the course of the reaction, usually driven by a favorable entropy increase in the system.[7] An example of an endothermic reaction is a first aid cold pack, in which the reaction of two chemicals, or dissolving of one in another, requires calories from the surroundings, and the reaction cools the pouch and surroundings by absorbing heat from them.[8]

Photosynthesis, the process that allows plants to convert carbon dioxide and water to sugar and oxygen, is an endothermic process: plants absorb radiant energy from the sun and use it in an endothermic, otherwise non-spontaneous process. The chemical energy stored can be freed by the inverse (spontaneous) process: combustion of sugar, which gives carbon dioxide, water and heat (radiant energy).[9]

Energy release[edit]

Exothermic refers to a transformation in which a closed system releases energy (heat) to the surroundings, expressed by

When the transformation occurs at constant pressure and without exchange of electrical energy, heat Q is equal to the enthalpy change, i.e.

[10]

while at constant volume, according to the first law of thermodynamics it equals internal energy (U) change, i.e.

In an adiabatic system (i.e. a system that does not exchange heat with the surroundings), an otherwise exothermic process results in an increase in temperature of the system.[11]

In exothermic chemical reactions, the heat that is released by the reaction takes the form of electromagnetic energy or kinetic energy of molecules.[12] The transition of electrons from one quantum energy level to another causes light to be released. This light is equivalent in energy to some of the stabilization energy of the energy for the chemical reaction, i.e. the bond energy. This light that is released can be absorbed by other molecules in solution to give rise to molecular translations and rotations, which gives rise to the classical understanding of heat. In an exothermic reaction, the activation energy (energy needed to start the reaction) is less than the energy that is subsequently released, so there is a net release of energy.[13]

Examples[edit]

An exothermic thermite reaction using iron(III) oxide. The sparks flying outwards are globules of molten iron trailing smoke in their wake.

Some examples of exothermic processes are:[14]

Implications for chemical reactions[edit]

Chemical exothermic reactions are generally more spontaneous than their counterparts, endothermic reactions.[16]

In a thermochemical reaction that is exothermic, the heat may be listed among the products of the reaction.

See also[edit]

  • Chemical thermodynamics
  • Differential scanning calorimetry
  • Endergonic
  • Endergonic reaction
  • Exergonic
  • Exergonic reaction
  • Endothermic reaction
  • References[edit]

  • ^ a b "17.3: Exothermic and Endothermic Processes". Chemistry LibreTexts. 2016-06-27. Retrieved 2024-06-26.
  • ^ Sutton, Mike (2007-03-01). "Chemistry for the common good". Chemistry World. Retrieved 2024-06-26.
  • ^ "IUPAC - exothermic reaction (E02269)". goldbook.iupac.org. The International Union of Pure and Applied Chemistry (IUPAC). doi:10.1351/goldbook.e02269. Retrieved 2024-06-26.
  • ^ Bashyal, Jyoti (2023-02-20). "Exothermic reactions with Important Examples". scienceinfo.com. Retrieved 2024-06-26.
  • ^ "Nuclear power plants - U.S. Energy Information Administration (EIA)". www.eia.gov. Retrieved 2024-06-26.
  • ^ Oxtoby, David W.; Gillis, H. P.; Butler, Laurie J. (2016). Principles of modern chemistry (8 ed.). Andover: Cengage Learning. p. 617. ISBN 978-1-305-07911-3.
  • ^ "The Cold Pack: A Chilly Example of an Endothermic Reaction - Let's Talk Science". letstalkscience.ca. 2020-06-01. Retrieved 2024-06-26.
  • ^ "Photosynthesis - What happens during photosynthesis? - OCR 21st Century - GCSE Combined Science Revision - OCR 21st Century". BBC Bitesize. Retrieved 2024-06-26.
  • ^ Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).Principles of Modern Chemistry, Brooks Cole. p. 617. ISBN 978-1305079113
  • ^ Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. pp. 6–7. ISBN 0-19-856552-6.
  • ^ "Potential Energy". Chemistry LibreTexts. 2013-10-02. Retrieved 2024-06-26.
  • ^ "Chapter 2 - Carbon-based fuels". Heinemann Chemistry. Vol. 2 (6 ed.). Pearson. pp. 64–65. ISBN 9780655700098.
  • ^ Exothermic – Endothermic examples Archived 2006-09-01 at the Wayback Machine. frostburg.edu
  • ^ "T510: Exothermic Reaction – Thermite". 23 December 2015.
  • ^ "Examples of Spontaneous Endothermic Reactions - Chemistry Examples". www.chemicool.com. Retrieved 2024-06-26.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Exothermic_process&oldid=1231104458"

    Categories: 
    Thermodynamic processes
    Chemical thermodynamics
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Articles containing Greek-language text
     



    This page was last edited on 26 June 2024, at 13:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki