Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  





2 Applications  





3 Notable buildings  



3.1  Under construction  







4 References  





5 External links  














ETFE






العربية
تۆرکجه
Čeština
Deutsch
Español
Euskara
فارسی
Français

Italiano
Nederlands
Русский
Српски / srpski
Srpskohrvatski / српскохрватски

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Fluon)

ETFE
Names
IUPAC name

poly(1,1,2,2-tetrafluorobutane-1,4-diyl)

Other names

poly(ethene-co-tetrafluoroethene)

Identifiers

CAS Number

ChemSpider
  • none

CompTox Dashboard (EPA)

  • InChI=1S/C2F4.C2H4/c3-1(4)2(5)6;1-2/h;1-2H2 checkY

    Key: QHSJIZLJUFMIFP-UHFFFAOYSA-N checkY

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Ethylene tetrafluoroethylene (ETFE) is a fluorine-based plastic. It was designed to have high corrosion resistance and strength over a wide temperature range. ETFE is a polymer and its source-based nameispoly(ethene-co-tetrafluoroethene). It is also known under the DuPont brand name Tefzel and is sometimes referred to as 'Teflon Film'. ETFE has a relatively high melting temperature and excellent chemical, electrical and high-energy radiation resistance properties.

Properties

[edit]

Useful comparison tables of PTFE against FEP, PFA and ETFE can be found on DuPont's website, listing the mechanical, thermal, chemical and electrical properties of each, side by side.[1] ETFE is effectively the high-strength version of the other three in this group.

ETFE film is self-cleaning (due to its nonstick properties) and recyclable.[2] As a film for roofing it can be stretched and still be taut if some variation in size, such as that caused by thermal expansion, were to occur. Employing heat welding, tears can be repaired with a patch or multiple sheets assembled into larger panels.

ETFE has an approximate tensile strength of 42 MPa (6100 psi), with a working temperature range of 89 Kto423 K (−185 °Cto+150 °Cor−300 °Fto+300 °F).[3]

ETFE resins are resistant to ultraviolet light. An artificial weathering test (comparable to 30 years’ exposure) produced no filtering and almost no signs of film deterioration.[4]

ETFE systems can control light transmission through the application of plasma coatings, varnishes or printed frit patterns.[5] Thermal and acoustic insulation can be incorporated into an ETFE structure via the use of multi-layer systems which use low-pressure air pumps to create ETFE "cushions".[6] For instance u value of ETFE single layer, double and three layers are approximately: 5.6, 2.5 and 1.9 W/m2.k respectively[7] while concerning g value of etfe cushion or SHGC in ETFE systems it can vary between 0.2 to 0.95 using frits[5] and for further info about SHGC in ETFE refer to[8]

Applications

[edit]
The Eden Project, Cornwall, UK. Biomes are constructed with ETFE cushions.
ETFE roof at Manchester Piccadilly station, Manchester, UK

ETFE was developed by DuPont in the 1970s initially as a lightweight, heat resistant film in the aerospace industry.[9] From its development it was largely used infrequently in agricultural and architectural projects.[9] ETFE's first large-scale use architecturally came in 2001 at the Eden Project where ETFE was selected as it can be printed and layered to control solar conditions and because it was found to have a low friction coefficient, which saves on maintenance as dust and dirt do not stick.[9]

An example of its use is as pneumatic panels to cover the outside of the football stadium Allianz Arena or the Beijing National Aquatics Centre (a.k.a. the Water Cube of the 2008 Olympics) – the world's largest structure made of ETFE film (laminate). The panels of the Eden Project are also made from ETFE, and the Tropical Islands have a 20,000 m2 window made from this translucent material.

Another key use of ETFE is for the covering of electrical and fiber-optic wiring used in high-stress, low-fume-toxicity and high-reliability situations. Aircraft, spacecraft and motorsport wiring are primary examples. Some small cross-section wires like the wire used for the wire-wrap technique are coated with ETFE.

As a dual laminate, ETFE can be bonded with FRP as a thermoplastic liner and used in pipes, tanks, and vessels for additional corrosion protection.

ETFE is commonly used in the nuclear industry for tie or cable wraps and in the aviation and aerospace industries for wire coatings. This is because ETFE has better mechanical toughness than PTFE. In addition, ETFE exhibits a high-energy radiation resistance and can withstand moderately high temperatures for a long period. Commercially deployed brand names of ETFE include TefzelbyDuPont, FluonbyAsahi Glass Company, Neoflon ETFEbyDaikin, and TexlonbyVector Foiltec. Sumitomo Electric developed an aluminium-ETFE composite marketed as Sumiflon-E (スミフロンE).[10] Additionally, now a day the commercial use of architectural ETFE as skylight or facade materials has become very popular all over the world not only in Europe, in middle east for instance many shopping malls, sports and cultural mega venues developments has utilized ETFE for example recent huge greenhouse park development in Abu Dhabi (Mawasem Park - Green House - Abu Dhabi House) managed by Fabrix360 ETFE expert[11]

Due to its high temperature resistance ETFE is also used in film mode as a mold-release film.[12] ETFE film offered by Guarniflon or Airtech International and Honeywell is used in aerospace applications such as carbon fiber pre-preg curing as a release film for molds or hot high-pressure plates.

ETFE cushions roof with integrated photovoltaic cells. Munich's municipal waste management department

Notable buildings

[edit]

Notable buildings and designs using ETFE as a significant architectural element:

National Space Centre, Leicester UK
Detail of Beijing National Aquatics Centre showing ETFE exterior cushions
Haneda Airport Terminal 2, International Flight Facilities, Tokyo, Japan

Under construction

[edit]

References

[edit]
  1. ^ "Fluoropolymer Comparison - Typical Properties DuPont". Archived from the original on November 16, 2018.
  • ^ "ETFE". Archived from the original on 2013-03-09. Retrieved 2008-02-06.
  • ^ "Boedeker Plastics, Inc. > Product". www.boedeker.com.
  • ^ "ETFE". FlexFacades by Structurflex. Retrieved 2019-10-09.
  • ^ a b Fabrix360 (2022-01-29). "How ETFE printing and adhesion durability lasts?". home. Retrieved 2023-12-12.{{cite web}}: CS1 maint: numeric names: authors list (link)
  • ^ "10 Benefits of Using ETFE Foil In Architecture".
  • ^ Fabrix360 (2020-04-01). "U-value ETFE cushion, the rout to precise determination". home. Retrieved 2023-12-12.{{cite web}}: CS1 maint: numeric names: authors list (link)
  • ^ Fabrix360 (2022-04-24). "What is ETFE G-value (Solar Heat Gain Coefficient SHGC)". home. Retrieved 2023-12-12.{{cite web}}: CS1 maint: numeric names: authors list (link)
  • ^ a b c d Lynch, Patrick (2019-04-06). "What is ETFE and Why Has it Become Architecture's Favorite Polymer?". ArchDaily. Retrieved 18 June 2021.
  • ^ "Characteristics of Sumiflon" (PDF). Sumitomo Electric. Retrieved 13 February 2024.
  • ^ "Projects | Fabrix360 | United Arab Emirates". home. Retrieved 2023-12-10.
  • ^ Fabrix360 (2021-12-05). "ETFE durability makes you worry!". home. Retrieved 2023-12-12.{{cite web}}: CS1 maint: numeric names: authors list (link)
  • ^ "LASED – LA Stadium & Entertainment District at Hollywood Park".
  • ^ "Banc of California Stadium Facts | Los Angeles Football Club". Archived from the original on 2017-12-13. Retrieved 2017-12-26.
  • ^ "The Northern Lights Display". BC Place.
  • ^ Stoelker, Tom (17 August 2012). "STUDIO V Bets on a Curving Lattice Porte-Cochere in Yonkers". Archpaper.com. Architect’s Newspaper. Archived from the original on 2 February 2014. Retrieved 19 January 2014.
  • ^ "ARTIC | Life's a Journey Celebrate the Ride". Archived from the original on 2014-10-23. Retrieved 2014-10-22.
  • ^ Tim Tucker, The Atlanta Journal-Constitution. "LEADOFF: What's next for Mercedes-Benz Stadium roof?". The Atlanta Journal-Constitution.
  • ^ Karychová, Pavla (2022-09-22). "The facade of the CIIRC building was awarded for design in Como, Italy | CIIRC". Retrieved 2024-01-21.
  • ^ "Grimshaw completes roller coaster attraction at shanghai disney resort's tomorrowland". 21 November 2017.
  • ^ "The Global Change Institute - The University of Queensland, Australia". gci.uq.edu.au.
  • ^ "A ONE OF A KIND ETFE FACADE".
  • ^ Gruver, Deb (20 August 2014). "New roof will help save jungle exhibit at Sedgwick County Zoo". Wichita Eagle. Retrieved 20 August 2014.
  • ^ "BNC Network - The region's largest construction intelligence platform".
  • ^ "Terminal C Canopy and Upper Deck". Retrieved 5 August 2021.
  • ^ "Latest look at the ETFE cushion canopy installation at TRON Lightcycle Run in Magic Kingdom".
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=ETFE&oldid=1208477778"

    Categories: 
    Building materials
    Copolymers
    Fluoropolymers
    Plastics
    Thermoplastics
    Hidden categories: 
    CS1 maint: numeric names: authors list
    Chemicals that do not have a ChemSpider ID assigned
    Chemicals without a PubChem CID
    Articles without InChI source
    Articles without EBI source
    Articles without KEGG source
    Articles without UNII source
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description is different from Wikidata
    Articles containing Japanese-language text
    Articles needing additional references from January 2017
    All articles needing additional references
    Articles using small message boxes
    All articles with unsourced statements
    Articles with unsourced statements from November 2020
     



    This page was last edited on 17 February 2024, at 17:48 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki