Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Etymology  





2 Causes  



2.1  Condensation and precipitation  





2.2  Isentropic draw-down  





2.3  Mechanical mixing  





2.4  Radiative warming  







3 Effects  





4 Purported physiological effects  





5 Local examples  





6 Gallery  





7 See also  





8 References  



8.1  Footnotes  







9 External links  














Foehn wind






Alemannisch
العربية
Aragonés
Asturianu
Azərbaycanca
 / Bân-lâm-gú

Български
Boarisch
Català
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
Euskara
فارسی
Français
Gaeilge
Galego

Հայերեն
Hrvatski
Bahasa Indonesia
Italiano
עברית

Kaszëbsczi
Қазақша
Lietuvių
Lombard
Magyar
Македонски


Bahasa Melayu
Nederlands

Norsk bokmål
Norsk nynorsk
Occitan
Pangcah
Polski
Português
Română
Русский
Shqip
Slovenčina
Slovenščina
Српски / srpski
Suomi
Svenska
Türkçe
Українська
Tiếng Vit


Zazaki

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Foehn effect)

The causes of the Foehn effect in the lee of mountains. Adapted from:[1]
Dissolving Föhn clouds over Cumbre Nueva (1400 metres; 4600'), La Palma

AFoehn, or Föhn (UK: /fɜːn/, US: /fn/ fayn,[2][3] US also /fʌn, fɜːrn/ fu(r)n[4][5]), is a type of dry, relatively warm, downslope wind that occurs in the lee (downwind side) of a mountain range. It is a rain shadow wind that results from the subsequent adiabatic warming of air that has dropped most of its moisture on windward slopes (see orographic lift). As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than equivalent elevations on the windward slopes.

Foehn winds can raise temperatures by as much as 14 °C (25 °F)[6] in just a matter of hours. Switzerland, southern Germany and Austria have a warmer climate due to the Foehn, as moist winds off the Mediterranean Sea blow over the Alps.

Etymology[edit]

The name Foehn (German: Föhn, pronounced [ˈføːn]) arose in the Alpine region. Originating from Latin (ventus) favonius, a mild west wind of which Favonius was the Roman personification[7] and probably transmitted by Romansh: favuogn or just fuogn, the term was adopted as Old High German: phōnno. In the Southern Alps, the phenomenon is known as Föhn but also Italian: favonio and feninSerbo-Croatian and Slovene. The German word Föhn (pronounced the same way) also means 'hairdryer', while the word Fön is a genericized trademark today owned by AEG.[8] The form phon is used in French-speaking parts of Switzerland as well as in Italy.

The name Föhn was originally used to refer to the south wind which blows during the winter months and brings thaw conditions to the northern side of the Alps. Because Föhn later became a generic term that was extended to other mountain ranges around the world that experience similar phenomena, the name "Alpine föhn" (Alpenföhn) was coined for the Föhns of the Alpine region.[9]

Causes[edit]

The warm moist air from northern Italy is blocked on the windward side, loses much of its water vapour content, and descends on the French plateau and valley of the Mont-Cenis range in the Maurienne valley.

There are four known causes of the Foehn warming and drying effect.[1] These mechanisms often act together, with their contributions varying depending on the size and shape of the mountain barrier and on the meteorological conditions, such as the upstream wind speed, temperature and humidity.

Condensation and precipitation[edit]

When winds blow over elevated terrain, air forced upwards expands and cools due to the decrease in pressure with height. Since colder air can hold less water vapour, moisture condenses to form clouds and precipitates as rain or snow on the mountain's upwind slopes. The change of state from vapour to liquid water releases latent heat energy which heats the air, partially countering the cooling that occurs as the air rises. The subsequent removal of moisture as precipitation renders this heat gain by the air irreversible, leading to the warm, dry, Foehn conditions as the air descends in the mountain's lee. This mechanism has become a popular textbook example of atmospheric thermodynamics. However, the common occurrence of 'dry' Foehn events, where there is no precipitation, implies there must be other mechanisms.

Rotor cloud revealing overturning and turbulence above the lee slopes of the Antarctic Peninsula during a westerly Foehn event

Isentropic draw-down[edit]

Isentropic draw-down is the draw-down of warmer, drier air from aloft. When the approaching winds are insufficiently strong to propel the low-level air up and over the mountain barrier, the airflow is said to be 'blocked' by the mountain and only air higher up near mountain-top level is able to pass over and down the lee slopes as Foehn winds. These higher source regions provide Foehn air that becomes warmer and drier on the leeside after it is compressed with descent due to the increase in pressure towards the surface.

Mechanical mixing[edit]

When river water passes over rocks, turbulence is generated in the form of rapids, and white water reveals the turbulent mixing of the water with the air above. Similarly, as air passes over mountains, turbulence occurs and the atmosphere is mixed in the vertical. This mixing generally leads to a downward warming and upward moistening of the cross-mountain airflow, and consequently to warmer, drier Foehn winds in the valleys downwind.

Radiative warming[edit]

Dry Foehn conditions are responsible for the occurrence of rain shadows in the lee of mountains, where clear, sunny conditions prevail. This often leads to greater daytime radiative (solar) warming under Foehn conditions. This type of warming is particularly important in cold regions where snow or ice melt is a concern or where avalanches are a risk.

Effects[edit]

Winds of this type are also called "snow-eaters" for their ability to make snow and ice melt or sublimate rapidly. This is a result not only of the warmth of Foehn air, but also its low relative humidity. Accordingly, Foehn winds are known to contribute to the disintegration of ice shelves in the polar regions.[10]

Foehn winds are notorious among mountaineers in the Alps, especially those climbing the Eiger, for whom the winds add further difficulty in ascending an already difficult peak.

They are also associated with the rapid spread of wildfires, making some regions which experience these winds particularly fire-prone.

Purported physiological effects[edit]

Anecdotally, residents in areas of frequent Foehn winds have reported experiencing a variety of illnesses ranging from migrainestopsychosis. The first clinical review of these effects was published by the Austrian physician Anton Czermak in the 19th century.[11] A study by the Ludwig-Maximilians-Universität München found that suicide and accidents increased by 10 percent during Foehn winds in Central Europe.[citation needed] The causation of Föhnkrankheit (English: Foehn-sickness) is unproven. Labels for preparations of aspirin combined with caffeine, codeine and the like will sometimes include Föhnkrankheit amongst the indications.[citation needed][12] Evidence for effects from Chinook winds remains anecdotal, as it does for New Zealand's Nor'wester.[13]

In some regions, Foehn winds are associated with causing circulatory problems, headaches, or similar ailments.[14] Researchers have found, however, the Foehn wind's warm temperature to be beneficial to humans in most situations, and have theorised that the reported negative effects may be a result of secondary factors, such as changes in the electrical field or in the ion state of the atmosphere, the wind's relatively low humidity, or the generally unpleasant sensation of being in an environment with strong and gusty winds.[14]

Local examples[edit]

Regionally, these winds are known by many different names. These include:

in Africa
in the Americas
in Antarctica
in Asia
in Europe
Foehn clouds upon the Karawanken mountain range, Carinthia, Austria
Foehn clouds over La Palma, Spain
in Oceania

Gallery[edit]

See also[edit]

References[edit]

Footnotes[edit]

  1. ^ a b Elvidge, Andrew D.; Renfrew, Ian A. (14 May 2015). "The Causes of Foehn Warming in the Lee of Mountains". Bulletin of the American Meteorological Society. 97 (3): 455–466. Bibcode:2016BAMS...97..455E. doi:10.1175/bams-d-14-00194.1.
  • ^ Jones, Daniel (2011). Roach, Peter; Setter, Jane; Esling, John (eds.). Cambridge English Pronouncing Dictionary (18th ed.). Cambridge University Press. ISBN 978-0-521-15255-6.
  • ^ Wells, John C. (2008). Longman Pronunciation Dictionary (3rd ed.). Longman. ISBN 978-1-4058-8118-0.
  • ^ Upton, Clive; Kretzschmar, William A. Jr. (2017). The Routledge Dictionary of Pronunciation for Current English (2nd ed.). Routledge. ISBN 978-1-138-12566-7.
  • ^ "foehn". Merriam-Webster.com Dictionary. Retrieved 2022-03-17.
  • ^ "South Dakota Weather History and Trivia for January". National Weather Service Weather Forecast Office. February 8, 2006. See January 22 entry.
  • ^ Concise Oxford Dictionary, 10th edition, Oxford University Press, entry föhn.
  • ^ "22. Januar 2009 – Vor 100 Jahren:『Fön』ins Markenregister eingetragen". WDR.de. 2009-01-22. Retrieved 2019-12-21.
  • ^ Der Brockhaus. Wetter und Klima. Seite 101, Brockhaus, Leipzig/Mannheim, 2009, ISBN 978-3-7653-3381-1
  • ^ Elvidge, Andrew D.; Renfrew, Ian A.; King, John C.; Orr, Andrew; Lachlan-Cope, Tom A. (January 2016). "Foehn warming distributions in nonlinear and linear flow regimes: a focus on the Antarctic Peninsula" (PDF). Quarterly Journal of the Royal Meteorological Society. 142 (695): 618–631. Bibcode:2016QJRMS.142..618E. doi:10.1002/qj.2489.
  • ^ Giannini, AJ; Malone, DA; Piotrowski, TA (1986). "The serotonin irritation syndrome – a new clinical entity?". The Journal of Clinical Psychiatry. 47 (1): 22–25. PMID 2416736.
  • ^ See the documentary: Snow Eater (the English translation of Canadian First Nations word phonetically pronounced chinook). telefilm.ca Archived 2013-10-17 at the Wayback Machine.
  • ^ Brook, K., "Grumpy nor'west winds," University of Canterbury, 2 December 2014. Retrieved 22 November 2023.
  • ^ a b Tuller, Stanton E. (April 1980). "The Effects of a Foehn Wind on Human Thermal Exchange: The Canterbury Nor'wester". New Zealand Geographer. 36 (1): 11–19. doi:10.1111/j.1745-7939.1980.tb01919.x.
  • ^ David M. Gaffin (2007). "Foehn Winds That Produced Large Temperature Differences near the Southern Appalachian Mountains". Weather and Forecasting. 22 (1): 145–159. Bibcode:2007WtFor..22..145G. CiteSeerX 10.1.1.549.7012. doi:10.1175/WAF970.1. S2CID 120049170.
  • ^ David M. Gaffin (2002). "Unexpected Warming Induced by Foehn Winds in the Lee of the Smoky Mountains". Weather and Forecasting. 17 (4): 907–915. Bibcode:2002WtFor..17..907G. doi:10.1175/1520-0434(2002)017<0907:UWIBFW>2.0.CO;2.
  • ^ "Wind Names". ggweather.com.
  • ^ Romanić; et al. (2015). "Contributing factors to Koshava wind characteristics". International Journal of Climatology. 36 (2): 956–973. Bibcode:2016IJCli..36..956R. doi:10.1002/joc.4397. S2CID 129669216.
  • ^ Romanić; et al. (2015). "Long-term trends of the 'Koshava' wind during the period 1949–2010". International Journal of Climatology. 35 (3): 288–302. Bibcode:2015IJCli..35..288R. doi:10.1002/joc.3981. S2CID 129402302.
  • ^ Sharples, J.J. Mills, G.A., McRae, R.H.D., Weber, R.O. (2010) Elevated fire danger conditions associated with foehn-like winds in southeastern Australia. Journal of Applied Meteorology and Climatology.
  • ^ Relph, D. "The Canterbury nor'wester," New Zealand Geographic. Retrieved 17 February 2018.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Foehn_wind&oldid=1230415019"

    Categories: 
    Föhn effect
    Mountain meteorology
    Weather and health
    Wind
    Winds
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Articles containing German-language text
    Pages with German IPA
    Articles containing Latin-language text
    Articles containing Romansh-language text
    Articles containing Old High German (ca. 750-1050)-language text
    Articles containing Italian-language text
    Articles containing Serbo-Croatian-language text
    Articles needing additional references from February 2013
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from May 2009
    Articles with unsourced statements from February 2013
    Articles needing additional references from February 2018
    Articles containing Persian-language text
    Articles containing Gilaki-language text
    Articles containing Vietnamese-language text
    Commons category link from Wikidata
    Articles with FAST identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with HDS identifiers
     



    This page was last edited on 22 June 2024, at 15:47 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki