Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical representation  





2 Properties  





3 Gaussian minimum-shift keying  





4 See also  





5 References  














Minimum-shift keying






العربية
Deutsch
Español
Français

Italiano
Latviešu

Polski

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from GMSK)

Indigital modulation, minimum-shift keying (MSK) is a type of continuous-phase frequency-shift keying that was developed in the late 1950s by Collins Radio employees Melvin L. Doelz and Earl T. Heald.[1] Similar to OQPSK, MSK is encoded with bits alternating between quadrature components, with the Q component delayed by half the symbol period.

However, instead of square pulses as OQPSK uses, MSK encodes each bit as a half sinusoid.[2][3] This results in a constant-modulus signal (constant envelope signal), which reduces problems caused by non-linear distortion. In addition to being viewed as related to OQPSK, MSK can also be viewed as a continuous-phase frequency-shift keyed (CPFSK) signal with a frequency separation of one-half the bit rate.

In MSK the difference between the higher and lower frequency is identical to half the bit rate. Consequently, the waveforms used to represent a 0 and a 1 bit differ by exactly half a carrier period. Thus, the maximum frequency deviation is δ = 0.5 fm where fm is the maximum modulating frequency. As a result, the modulation index m is 0.5. This is the smallest FSK modulation index that can be chosen such that the waveforms for 0 and 1 are orthogonal. A variant of MSK called Gaussian minimum-shift keying (GMSK) is used in the GSM mobile phone standard.

Mathematical representation[edit]

MSK waveform can also be designed as OQPSK (i.e. in I/Q manner) with the sinusoidal pulse shaping.[4][5] Mapping changes in continuous phase. Each bit time, the carrier phase changes by ±90°.

The resulting signal is represented by the formula:[3][failed verification]

where and encode the even and odd information respectively with a sequence of square pulses of duration 2T. has its pulse edges on and on. The carrier frequencyis.

Using the trigonometric identity, this can be rewritten in a form where the phase and frequency modulation are more obvious,

where bk(t) is +1 when and −1 if they are of opposite signs, and is 0 if is 1, and otherwise. Therefore, the signal is modulated in frequency and phase, and the phase changes continuously and linearly.

Properties[edit]

Power spectral density of MSK, BPSK, and QPSK. The side-lobes of MSK are lower (−23 dB) than in both BPSK and QPSK cases (−10 dB). Therefore, the inter-channel interference is lower in MSK case. Moreover, the main lobe of the MSK signal is wider, which means more energy in the null-to-null bandwidth. However, this can be also the disadvantage where extremely narrow bandwidth is required (null-to-null bandwidth of QPSK is equal to 3dB-bandwidth, null-to-null bandwidth of the MSK signal is 1.5 times as large as the 3dB-bandwidth.[6]

Since the minimum symbol distance is the same as in the QPSK,[7][6] the following formula can be used for the theoretical bit-error ratio bound:

where is the energy per one bit, is the noise spectral density, denotes the Q-function and denotes the complementary error function.

Gaussian minimum-shift keying[edit]

Power spectral densities of MSK and GMSK. Note that the decreasing of time-bandwidth negatively influences bit-error-rate performance due to increasing intersymbol interference.[8]

Gaussian minimum-shift keying, or GMSK, is similar to standard minimum-shift keying (MSK); however, the digital data stream is first shaped with a Gaussian filter before being applied to a frequency modulator, and typically has much narrower phase shift angles than most MSK modulation systems. This has the advantage of reducing sideband power, which in turn reduces out-of-band interference between signal carriers in adjacent frequency channels.[9]

However, the Gaussian filter increases the modulation memory in the system and causes intersymbol interference, making it more difficult to differentiate between different transmitted data values and requiring more complex channel equalization algorithms such as an adaptive equalizer at the receiver. GMSK has high spectral efficiency, but it needs a higher power level than QPSK, for instance, in order to reliably transmit the same amount of data. GMSK is most notably used in the Global System for Mobile Communications (GSM), in Bluetooth, in satellite communications,[10][11] and Automatic Identification System (AIS) for maritime navigation.

See also[edit]

References[edit]

  1. ^ M.L Doelz and E.T. Heald, Minimum Shift Data Communication System, US Patent 2977417, 1958, http://www.freepatentsonline.com/2977417.html
  • ^ Anderson J. B., Aulin T., Sundberg C. E. Digital phase modulation. – Springer Science & Business Media, 2013. – p.49–50
  • ^ a b Proakis, John G. (2001). Digital Communication (4 ed.). McGraw-Hill Inc. pp. 196-199.
  • ^ Proakis J. G. Digital communications. 1995 //McGraw-Hill, New York. – p. 126-128
  • ^ Anderson J. B., Aulin T., Sundberg C. E. Digital phase modulation. – Springer Science & Business Media, 2013. – p. 49-50
  • ^ a b Link Budget Analysis: Digital Modulation-Part 2-FSK (Atlanta RF)
  • ^ Haykin, S., 2001. Communication Systems, John Wiley&Sons. Inc. - p. 394
  • ^ Haykin, S., 2001. Communication Systems, John Wiley&Sons. Inc. - p. 398
  • ^ Poole, Ian. "What is GMSK Modulation - Gaussian Minimum Shift Keying". RadioElectronics.com. Retrieved March 23, 2014.
  • ^ Rice, M., Oliphant, T., & Mcintire, W. (2007). Estimation techniques for GMSK using linear detectors in satellite communications. IEEE Transactions on Aerospace and Electronic Systems, 43(4).
  • ^ Wong, Yen F., et al. "An optimum space-to-ground communication concept for CubeSat platform utilizing NASA space network and near earth network." (2016).

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Minimum-shift_keying&oldid=1193036754#Gaussian_minimum-shift_keying"

    Category: 
    Quantized radio modulation modes
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from April 2020
    All articles needing additional references
    All articles with failed verification
    Articles with failed verification from April 2020
     



    This page was last edited on 1 January 2024, at 18:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki