Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Integrated circuit GPIOs  





2 Board-level GPIOs  





3 Usage  





4 Implementation  





5 See also  





6 References  





7 External links  














General-purpose input/output






العربية
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Euskara
Français

ि
Italiano
Nederlands

Polski
Português
Русский
Suomi
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from GPIO)

Ageneral-purpose input/output (GPIO) is an uncommitted digital signal pin on an integrated circuit or electronic circuit (e.g. MCUs/MPUs) board which may be used as an input or output, or both, and is controllable by software.

GPIOs have no predefined purpose and are unused by default.[1][2] If used, the purpose and behavior of a GPIO is defined and implemented by the designer of higher assembly-level circuitry: the circuit board designer in the case of integrated circuit GPIOs, or system integrator in the case of board-level GPIOs.

Integrated circuit GPIOs

[edit]

Integrated circuit (IC) GPIOs are implemented in a variety of ways. Some ICs provide GPIOs as a primary function whereas others include GPIOs as a convenient "accessory" to some other primary function. Examples of the former include the Intel 8255, which interfaces 24 GPIOs to a parallel communication bus, and various GPIO expander ICs, which interface GPIOs to serial communication buses such as I²C and SMBus. An example of the latter is the Realtek ALC260 IC, which provides eight GPIOs along with its main function of audio codec.

Microcontroller ICs usually include GPIOs. Depending on the application, a microcontroller's GPIOs may comprise its primary interface to external circuitry or they may be just one type of I/O used among several, such as analog signal I/O, counter/timer, and serial communication.

In some ICs, particularly microcontrollers, a GPIO pin may be capable of other functions than GPIO. Often in such cases it is necessary to configure the pin to operate as a GPIO (vis-á-vis its other functions) in addition to configuring the GPIO's behavior. Some microcontroller devices (e.g., Microchip dsPIC33 family) incorporate internal signal routing circuitry that allows GPIOs to be programmatically mapped to device pins. Field-programmable gate arrays (FPGA) extend this ability by allowing GPIO pin mapping, instantiation and architecture to be programmatically controlled.

Board-level GPIOs

[edit]

Many circuit boards expose board-level GPIOs to external circuitry through integrated electrical connectors. Usually, each such GPIO is accessible via a dedicated connector pin.

Like IC-based GPIOs, some boards merely include GPIOs as a convenient, auxiliary resource that augments the board's primary function, whereas in other boards the GPIOs are the central, primary function of the board. Some boards, which are classified usually as multi-function I/O boards, are a combination of both; such boards provide GPIOs along with other types of general-purpose I/O. GPIOs are also found on embedded controller boards and Single board computers such as Arduino, BeagleBone, and Raspberry Pi.[3]

Board-level GPIOs are often given abilities which IC-based GPIOs usually lack. For example, Schmitt-trigger inputs, high-current output drivers, optical isolators, or combinations of these, may be used to buffer and condition the GPIO signals and to protect board circuitry. Also, higher-level functions are sometimes implemented, such as input debounce, input signal edge detection, and pulse-width modulation (PWM) output.

Usage

[edit]

GPIOs are used in a diverse variety of applications, limited only by the electrical and timing specifications of the GPIO interface and the ability of software to interact with GPIOs in a sufficiently timely manner.

GPIOs usually employ standard logic levels and cannot supply significant current to output loads. When followed by an appropriate high-current output buffer (or mechanical or solid-state relay), a GPIO may be used to control high-power devices such as lights, solenoids, heaters, and motors (e.g., fans and blowers). Similarly, an input buffer, relay or opto-isolator is often used to translate an otherwise incompatible signal (e.g., high voltage) to the logic levels required by a GPIO.

Integrated circuit GPIOs are commonly used to control or monitor other circuitry (including other ICs) on a board. Examples of this include enabling and disabling the operation of (or power to) other circuitry, reading the states of on-board switches and configuration shunts, and driving light-emitting diode (LED) status indicators. In the latter case, a GPIO can, in many cases, supply enough output current to directly power an LED without using an intermediate buffer.

Multiple GPIOs are sometimes used together as a bit banging communication interface. For example, two GPIOs may be used to implement a serial communication bus such as Inter-Integrated Circuit (I²C), and four GPIOs can be used to implement a Serial Peripheral Interface (SPI) bus; these are usually used to facilitate serial communication with ICs and other devices which have compatible serial interfaces, such as sensors (e.g., temperature sensors, pressure sensors, accelerometers) and motor controllers. Taken to the extreme, this method may be used to implement an entire parallel bus, thus allowing communication with bus-oriented ICs or circuit boards.

Although GPIOs are fundamentally digital in nature, they are often used to control analog processes. For example, a GPIO may be used to control motor speed, light intensity, or temperature. Usually, this is done via PWM, in which the duty cycle of the GPIO output signal determines the effective magnitude of the process control signal. For example, when controlling light intensity, the light may be dimmed by reducing the GPIO duty cycle. Some analog processes require an analog control voltage. In such cases, it may be feasible to connect a GPIO, which is operated as a PWM output, to an RC filter to create a simple, low cost digital-to-analog converter.

Implementation

[edit]

GPIO interfaces vary widely. In some cases, they are simple—a group of pins that can switch as a group to either input or output. In others, each pin can be set up to accept or source different logic voltages, with configurable drive strengths and pull ups/downs. Input and output voltages are usually, but not always, limited to the supply voltage of the device with the GPIOs, and may be damaged by greater voltages.

A GPIO pin's state may be exposed to the software developer through one of a number of different interfaces, such as a memory-mapped I/O peripheral, or through dedicated IO port instructions. Some GPIOs have 5 V tolerant inputs: even when the device has a low supply voltage (such as 2 V), the device can accept 5 V without damage.

A GPIO port is a group of GPIO pins (often 8 pins, but it may be less) arranged in a group and controlled as a group.

GPIO abilities may include:[2]

See also

[edit]

References

[edit]
  1. ^ White, Jon, ed. (2016). Raspberry Pi – The Complete Manual (7th ed.). Bournemouth, England, United Kingdom: Imagine Publishing. p. 36. ISBN 978-1785463709.
  • ^ a b "General Purpose Input/Output". Oracle Java ME Embedded Developer's Guide (8 ed.). Oracle Corporation. 2014.
  • ^ "GPIO – Raspberry Pi Documentation". Raspberry Pi Foundation. Retrieved 3 November 2016.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=General-purpose_input/output&oldid=1234573955"

    Categories: 
    Computer buses
    Integrated circuits
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from June 2024
    Webarchive template wayback links
     



    This page was last edited on 15 July 2024, at 02:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki