Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Cartography applications  





2 Measurement techniques  



2.1  Terrestrial techniques  



2.1.1  Triangulation  





2.1.2  Trilateration  







2.2  Satellite geodesy  



2.2.1  Global navigation satellite systems (GNSS)  









3 See also  





4 References  














Geodetic control network






العربية
Deutsch
Eesti

Italiano
Oʻzbekcha / ўзбекча
Polski
Português
Русский
Slovenčina
Српски / srpski
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Geodetic network)

Network of reference stations used by Austrian Positioning Service (APOS)

Ageodetic control network is a network, often of triangles, that are measured precisely by techniques of control surveying, such as terrestrial surveyingorsatellite geodesy. It is also known as a geodetic network, reference network, control point network, or simply control network.

A geodetic control network consists of stable, identifiable points with published datum values derived from observations that tie the points together.[1]

Classically, a control is divided into horizontal (X-Y) and vertical (Z) controls (components of the control), however with the advent of satellite navigation systems, GPS in particular, this division is becoming obsolete.

In the U.S., there is a national control network called the National Spatial Reference System (NSRS).[2]

Many organizations contribute information to the geodetic control network.[3]

The higher-order (high precision, usually millimeter-to-decimeter on a scale of continents) control points are normally defined in both space and time using global or space techniques, and are used for "lower-order" points to be tied into. The lower-order control points are normally used for engineering, construction and navigation. The scientific discipline that deals with the establishing of coordinates of points in a control network is called geodesy.

Cartography applications[edit]

Example of triangle network and its application in cartography

After a cartographer registers key points in a digital map to the real world coordinates of those points on the ground, the map is then said to be "in control". Having a base map and other data in geodetic control means that they will overlay correctly.

When map layers are not in control, it requires extra work to adjust them to line up, which introduces additional error. Those real world coordinates are generally in some particular map projection, unit, and geodetic datum.[4]

Measurement techniques[edit]

Terrestrial techniques[edit]

Triangulation[edit]

Worldwide BC-4 camera geometric satellite triangulation network

In "classical geodesy" (up to the sixties) control networks were established by triangulation using measurements of angles and of some spare distances. The precise orientation to the geographic north is achieved through methods of geodetic astronomy. The principal instruments used are theodolites and tacheometers, which nowadays are equipped with infrared distance measuring, data bases, communication systems and partly by satellite links.

Trilateration[edit]

Control point marker placed by the US Coast and Geodetic Survey

Electronic distance measurement (EDM) was introduced around 1960, when the prototype instruments became small enough to be used in the field. Instead of using only sparse and much less accurate distance measurements some control networks were established or updated by using trilateration more accurate distance measurements than was previously possible and no angle measurements.

EDM increased network accuracies up to 1:1 million (1 cm per 10 km; today at least 10 times better), and made surveying less costly.

Satellite geodesy[edit]

International Terrestrial Reference System (ITRF) reference stations

The geodetic use of satellites began around the same time. By using bright satellites like Echo I, Echo II and Pageos, global networks were determined, which later provided support for the theory of plate tectonics.

Another important improvement was the introduction of radio and electronic satellites like Geos A and B (1965–70), of the Transit system (Doppler effect) 1967-1990 — which was the predecessor of GPS - and of laser techniques like LAGEOS (USA, Italy) or Starlette (France). Despite the use of spacecraft, small networks for cadastral and technical projects are mainly measured terrestrially, but in many cases incorporated in national and global networks by satellite geodesy.

Global navigation satellite systems (GNSS)[edit]

Typical GNSS reference station

Nowadays, several hundred geospatial satellites are in orbit, including a large number of remote sensing satellites and navigation systems like GPS and Glonass, which was followed by the European Galileo satellites in 2020 and China's Beidou constellation.

While these developments have made satellite-based geodetic network surveying more flexible and cost effective than its terrestrial equivalent for areas free of tree canopy or urban canyons, the continued existence of fixed point networks is still needed for administrative and legal purposes on local and regional scales. Global geodetic networks cannot be defined to be fixed, since geodynamics are continuously changing the position of all continents by 2 to 20 cm per year. Therefore, modern global networks like ETRS89orITRF show not only coordinates of their "fixed points", but also their annual velocities.

See also[edit]

References[edit]

  • ^ "8. Theme: Geodetic Control | The Nature of Geographic Information". www.e-education.psu.edu. Retrieved 2023-12-31.
  • ^ Minnesota Geospatial Information Office. "MSDI Data: Geodetic Control".
  • ^ Minnesota Geospatial Information Office. "Plan for GIS implementation". 1997.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Geodetic_control_network&oldid=1223808797"

    Categories: 
    Civil engineering
    Geodetic surveys
    Surveying and geodesy markers
    Hidden categories: 
    Articles needing additional references from August 2016
    All articles needing additional references
    Articles with EMU identifiers
     



    This page was last edited on 14 May 2024, at 14:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki