Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Ecological balance  





2 References  














Geogrid






Deutsch
فارسی
Français
Polski
Русский
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Geogrids)

Geogrids are used to prevent sliding on long and steep slopes during installation and use of a landfill capping system.[1]

Ageogridisgeosynthetic material used to reinforce soils and similar materials. Soils pull apart under tension. Compared to soil, geogrids are strong in tension. This fact allows them to transfer forces to a larger area of soil than would otherwise be the case.[citation needed]

Geogrids are commonly made of polymer materials, such as polyester, polyvinyl alcohol, polyethyleneorpolypropylene. They may be woven or knitted from yarns, heat-welded from strips of material, or produced by punching a regular pattern of holes in sheets of material, then stretched into a grid.

The development of methods of preparing relatively rigid polymeric materials by tensile drawing,[2] in a sense "cold working," raised the possibility that such materials could be used in the reinforcement of soils for walls, steep slopes, roadway bases and foundation soils. The principal function of geogrids is for reinforcement. This area, as with many other geosynthetics, is very active, with a number of different products, materials, configurations, etc., making up today's geogrid market. The key feature of all geogrids is that the openings between the adjacent sets of longitudinal and transverse ribs, called “apertures,” are large enough to allow for soil strike-through from one side of the geogrid to the other. The ribs of some geogrids are often quite stiff compared to the fibers of geotextiles. As discussed later, not only is rib strength important, but junction strength is also important. The reason for this is that in anchorage situations the soil strike-through within the apertures bears against the transverse ribs, which transmits the load to the longitudinal ribs via the junctions. The junctions are, of course, where the longitudinal and transverse ribs meet and are connected. They are sometimes called “nodes”.

Currently there are three categories of geogrids. The first, and original, geogrids (called unitized or homogeneous types, or more commonly referred to as 'punched and drawn geogrids') were invented by Dr Frank Brian Mercer[3] in the United Kingdom at Netlon, Ltd., and were brought in 1982 to North America by the Tensar Corporation. A conference in 1984 was helpful in bringing geogrids to the engineering design community.[4] A similar type of drawn geogrid which originated in Italy by Tenax is also available, as are products by new manufacturers in Asia.

The second category of geogrids are more flexible, textile-like geogrids using bundles of polyethylene-coated polyester fibres as the reinforcing component. They were first developed by ICI Linear Composites LTD in the United Kingdom around 1980. This led to the development of polyester yarn geogrids made on textile weaving machinery. In this process hundreds of continuous fibers are gathered together to form yarns which are woven into longitudinal and transverse ribs with large open spaces between. The cross-overs are joined by knitting or intertwining before the entire unit is protected by a subsequent coating. Bitumen, latex, or PVC are the usual coating materials. Geosynthetics within this group are manufactured by many companies having various trademarked products. There are possibly as many as 25 companies manufacturing coated yarn-type polyester geogrids on a worldwide basis.

The third category of geogrids are made by laserorultrasonically bonding together polyester or polypropylene rods or straps in a gridlike pattern. Two manufacturers currently make such geogrids.

The geogrid sector is extremely active not only in manufacturing new products, but also in providing significant technical information to aid the design engineer.

Ecological balance[edit]

Usually retaining walls are constructed of reinforced concrete, if an impermeable surface is not desired, it would be a sensible solution to create a filling area (but not for dam constructions). Choosing the ground reinforced with geogrid reinforcements instead of reinforced concrete retaining wall will also contribute to the ecological balance. While reinforced concrete wall surfaces cannot be vegetated, the surfaces of filled areas reinforced with geogrid reinforcements can be vegetated.[5]

References[edit]

  1. ^ Müller, W. W.; Saathoff, F. (2015). "Geosynthetics in geoenvironmental engineering". Science and Technology of Advanced Materials. 16 (3): 034605. Bibcode:2015STAdM..16c4605M. doi:10.1088/1468-6996/16/3/034605. PMC 5099829. PMID 27877792.
  • ^ Capaccio, G.; Ward, I. M. (1973). "Properties of Ultra-high Modulus Linear Polyethylenes". Nature Physical Science. 243 (130): 143. Bibcode:1973NPhS..243..143C. doi:10.1038/physci243143a0.
  • ^ Mercer, F.B. (1987) "Critical Aspects of Industrial and Academic Collaboration," The Philips Lecture, The Royal Society.
  • ^ Ward, I. M. (1984) “The Orientation of Polymers to Produce High Performance Materials” Proceedings of the Symposium on Polymer Grid Reinforcement in Civil Engineering, Institution of Civil Engineers, UK.
  • ^ Kırmızı, M. (2020). Stability of filling areas: example of The Çamlica mosque (Doctoral thesis, Istanbul Aydın University, Turkey).

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Geogrid&oldid=1153579086"

    Category: 
    Geosynthetics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2020
     



    This page was last edited on 7 May 2023, at 05:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki