Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Landau free energy  







2 Homogeneous systems (vs. inhomogeneous systems)  





3 See also  





4 References  





5 External links  














Grand potential






Deutsch
Español
فارسی

Հայերեն
עברית

Português
Română
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Grand canonical potential)

The grand potentialorLandau potentialorLandau free energy is a quantity used in statistical mechanics, especially for irreversible processesinopen systems. The grand potential is the characteristic state function for the grand canonical ensemble.

Definition[edit]

Grand potential is defined by

where U is the internal energy, T is the temperature of the system, S is the entropy, μ is the chemical potential, and N is the number of particles in the system.

The change in the grand potential is given by

where Pispressure and Visvolume, using the fundamental thermodynamic relation (combined first and second thermodynamic laws);

When the system is in thermodynamic equilibrium, ΦG is a minimum. This can be seen by considering that dΦG is zero if the volume is fixed and the temperature and chemical potential have stopped evolving.

Landau free energy[edit]

Some authors refer to the grand potential as the Landau free energyorLandau potential and write its definition as:[1][2]

named after Russian physicist Lev Landau, which may be a synonym for the grand potential, depending on system stipulations. For homogeneous systems, one obtains .[3]

Homogeneous systems (vs. inhomogeneous systems)[edit]

In the case of a scale-invariant type of system (where a system of volume has exactly the same set of microstates as systems of volume ), then when the system expands new particles and energy will flow in from the reservoir to fill the new volume with a homogeneous extension of the original system. The pressure, then, must be constant with respect to changes in volume:

and all extensive quantities (particle number, energy, entropy, potentials, ...) must grow linearly with volume, e.g.

In this case we simply have , as well as the familiar relationship for the Gibbs free energy. The value of can be understood as the work that can be extracted from the system by shrinking it down to nothing (putting all the particles and energy back into the reservoir). The fact that is negative implies that the extraction of particles from the system to the reservoir requires energy input.

Such homogeneous scaling does not exist in many systems. For example, when analyzing the ensemble of electrons in a single molecule or even a piece of metal floating in space, doubling the volume of the space does double the number of electrons in the material.[4] The problem here is that, although electrons and energy are exchanged with a reservoir, the material host is not allowed to change. Generally in small systems, or systems with long range interactions (those outside the thermodynamic limit), .[5]

See also[edit]

References[edit]

  1. ^ Lee, J. Chang (2002). "5". Thermal Physics - Entropy and Free Energies. New Jersey: World Scientific.
  • ^ Reference on "Landau potential" is found in the book: D. Goodstein. States of Matter. p. 19.
  • ^ McGovern, Judith. "The Grand Potential". PHYS20352 Thermal and Statistical Physics. University of Manchester. Retrieved 5 December 2016.
  • ^ Brachman, M. K. (1954). "Fermi Level, Chemical Potential, and Gibbs Free Energy". The Journal of Chemical Physics. 22 (6): 1152. Bibcode:1954JChPh..22.1152B. doi:10.1063/1.1740312.
  • ^ Hill, Terrell L. (2002). Thermodynamics of Small Systems. Courier Dover Publications. ISBN 9780486495095.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Grand_potential&oldid=1138924816"

    Categories: 
    Thermodynamics
    Lev Landau
     



    This page was last edited on 12 February 2023, at 11:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki