Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Process  





2 History  





3 Specification  





4 See also  





5 References  














Hot-dip galvanization






العربية
Català
Deutsch
Esperanto
فارسی
Français
ि
Hrvatski
Magyar
Nederlands

Norsk bokmål
Polski
Русский
Srpskohrvatski / српскохрватски
Svenska

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Hot-dip galvanisation)

Galvanised hand rail
Crystalline surface of a hot-dip galvanized handrail, known as "spangle"
Protective effect: completely rusted letter box mounted to a hot-dip galvanized wall

Hot-dip galvanization is a form of galvanization. It is the process of coating iron and steel with zinc, which alloys with the surface of the base metal when immersing the metal in a bath of molten zinc at a temperature of around 450 °C (842 °F). When exposed to the atmosphere, the pure zinc (Zn) reacts with oxygen (O2) to form zinc oxide (ZnO), which further reacts with carbon dioxide (CO2) to form zinc carbonate (ZnCO3), a usually dull grey, fairly strong material that protects the steel underneath from further corrosion in many circumstances. Galvanized steel is widely used in applications where corrosion resistance is needed without the cost of stainless steel, and is considered superior in terms of cost and life-cycle. It can be identified by the crystallization patterning on the surface (often called a "spangle").[1]

Galvanized steel can be welded; however, one must exercise caution around the resulting toxic zinc fumes. Galvanized fumes are released when the galvanized metal reaches a certain temperature. This temperature varies by the galvanization process used. In long-term, continuous exposure, the recommended maximum temperature for hot-dip galvanized steel is 200 °C (392 °F), according to the American Galvanizers Association. The use of galvanized steel at temperatures above this will result in peeling of the zinc at the inter-metallic layer[citation needed]. Electrogalvanized sheet steel is often used in automotive manufacturing to enhance the corrosion performance of exterior body panels; this is, however, a completely different process which tends to achieve lower coating thicknesses of zinc.

Like other corrosion protection systems, galvanizing protects steel by acting as a barrier between steel and the atmosphere. However, zinc is a more electropositive (active) metal in comparison to steel. This is a unique characteristic for galvanizing, which means that when a galvanized coating is damaged and steel is exposed to the atmosphere, zinc can continue to protect steel through galvanic corrosion (often within an annulus of 5 mm, above which electron transfer rate decreases).

Process[edit]

The process of hot-dip galvanizing results in a metallurgical bond between zinc and steel, with a series of distinct iron-zinc alloys. The resulting coated steel can be used in much the same way as uncoated.

A typical hot-dip galvanizing line operates as follows:[2]

Lead is often added to the molten zinc bath to improve the fluidity of the bath (thus limiting excess zinc on the dipped product by improved drainage properties), help prevent floating dross, make dross recycling easier and protect the kettle from uneven heat distribution from the burners. Environmental regulations in the United States disapprove of lead in the kettle bath. Lead is either added to primary Z1 grade zinc or already contained in used secondary zinc. A third, declining method is to use low Z5 grade zinc.[3]

Steel strip can be hot-dip galvanized in a continuous line. Hot-dip galvanized steel strip (also sometimes loosely referred to as galvanized iron) is extensively used for applications requiring the strength of steel combined with the resistance to corrosion of zinc, such as roofing and walling, safety barriers, handrails, consumer appliances and automotive body parts. One common use is in metal pails. Galvanised steel is also used in most heating and cooling duct systems in buildings

Individual metal articles, such as steel girders or wrought iron gates, can be hot-dip galvanized by a process called batch galvanizing. Other modern techniques have largely replaced hot-dip for these sorts of roles. This includes electrogalvanizing, which deposits the layer of zinc from an aqueous electrolyte by electroplating, forming a thinner and much stronger bond.

History[edit]

In 1742, French chemist Paul Jacques Malouin described a method of coating iron by dipping it in molten zinc in a presentation to the French Royal Academy.

In 1772, Luigi Galvani (Italy), for whom galvanizing was named, discovered the electrochemical process that takes place between metals during an experiment with frog legs.

In 1801, Alessandro Volta furthered the research on galvanizing when he discovered the electro-potential between two metals, creating a corrosion cell.

In 1836, French chemist Stanislas Sorel obtained a patent for a method of coating iron with zinc, after first cleaning it with 9% sulfuric acid (H2SO4) and fluxing it with ammonium chloride (NH4Cl).

Specification[edit]

A hot-dip galvanized coating is relatively easier and cheaper to specify than an organic paint coating of equivalent corrosion protection performance. The British, European and International standard for hot-dip galvanizing is BS EN ISO 1461, which specifies a minimum coating thickness to be applied to steel in relation to the steels section thickness e.g. a steel fabrication with a section size thicker than 6 mm shall have a minimum galvanized coating thickness of 85 μm.

Further performance and design information for galvanizing can be found in BS EN ISO 14713-1 and BS EN ISO 14713-2. The durability performance of a galvanized coating depends solely on the corrosion rate of the environment in which it is placed. Corrosion rates for different environments can be found in BS EN ISO 14713-1, where typical corrosion rates are given, along with a description of the environment in which the steel would be used.

See also[edit]

References[edit]

  1. ^ GalvInfo (August 2011). "GalvInfoNote / The Spangle on Hot-Dip Galvanized Steel Sheet" (PDF). GalvInfo. Archived from the original (PDF) on 2 March 2014. Retrieved 27 February 2014.
  • ^ "The Hot-Dip Galvanizing Process". V&S Hot Dip Galvanzing. Archived from the original on 2013-06-23. Retrieved 2012-11-30.
  • ^ European Commission, Reference Document on Best Available Techniques in the Non Ferrous Metals Industries, December 2001
    Primary zinc grade table on page 15

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Hot-dip_galvanization&oldid=1223744849"

    Categories: 
    Corrosion prevention
    Coatings
    Zinc
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from November 2013
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from June 2016
    Articles with GND identifiers
    Articles with NKC identifiers
     



    This page was last edited on 14 May 2024, at 01:54 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki