Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Historical background and indices  



1.1  Köppen  





1.2  Thornthwaite  





1.3  United Nations Environment Programme  







2 See also  





3 References  














Aridity index






العربية
Català
Deutsch
فارسی
Français
Magyar
Nederlands

Português
Suomi
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Hyperarid)

Anaridity index (AI) is a numerical indicator of the degree of dryness of the climate at a given location. The American Meteorological Society defined it in meteorology and climatology, as "the degree to which a climate lacks effective, life-promoting moisture". Aridity is different from drought because aridity is permanent whereas drought is temporary.[1] A number of aridity indices have been proposed (see below); these indicators serve to identify, locate or delimit regions that suffer from a deficit of available water, a condition that can severely affect the effective use of the land for such activities as agriculture or stock-farming.

Historical background and indices

[edit]

Köppen

[edit]

At the turn of the 20th century, Wladimir Köppen and Rudolf Geiger developed the concept of a climate classification where arid regions were defined as those places where the annual rainfall accumulation (in centimetres) is less than , where:

where is the mean annual temperature in Celsius.

This was one of the first attempts at defining an aridity index, one that reflects the effects of the thermal regime and the amount and distribution of precipitation in determining the native vegetation possible in an area. It recognizes the significance of temperature in allowing colder places such as northern Canada to be seen as humid with the same level of precipitation as some tropical deserts because of lower levels of potential evapotranspiration in colder places. In the subtropics, the allowance for the distribution of rainfall between warm and cold seasons recognizes that winter rainfall is more effective for plant growth that can flourish in the winter and go dormant in the summer than the same amount of summer rainfall during a warm-to-hot season. Thus a place like Athens, Greece that gets most of its rainfall in winter can be considered to have a humid climate (as attested in lush foliage) with roughly the same amount of rainfall that imposes semi-desert conditions in Midland, Texas, where rainfall largely occurs in the summer.

Thornthwaite

[edit]

In 1948, C. W. Thornthwaite proposed an AI defined as:

where the water deficiency is calculated as the sum of the monthly differences between precipitation and potential evapotranspiration for those months when the normal precipitation is less than the normal evapotranspiration; and where stands for the sum of monthly values of potential evapotranspiration for the deficient months (after Huschke, 1959). This AI was later used by Meigs (1961) to delineate the arid zones of the world in the context of the UNESCO Arid Zone Research programme.[2]

United Nations Environment Programme

[edit]

In the preparations leading to the 1977 UN Conference on Desertification (UNCOD), the United Nations Environment Programme (UNEP) issued a dryness map based on a different aridity index, proposed originally by Mikhail Ivanovich Budyko (1958)[3] and defined as follows:[4]

where is the mean annual net radiation (also known as the net radiation balance), is the mean annual precipitation, and is the latent heat of vaporization for water. Note that this index is dimensionless and that the variables , and can be expressed in any system of units that is self-consistent.

More recently in 1992, the UNEP has adopted yet another index of aridity, defined as:[5]

Global map of the aridity index, from the CGIAR, following UNEP's definition, AI = P/PET.

where is the potential evapotranspiration and is the average annual precipitation (UNEP, 1992). Here also, and must be expressed in the same units, e.g., in millimetres. In this latter case, the boundaries that define various degrees of aridity and the approximate areas involved are as follows:

Classification Aridity Index Global land area
Hyperarid AI < 0.05 7.5%
Arid 0.05 < AI < 0.20 12.1%
Semi-arid 0.20 < AI < 0.50 17.7%
Dry subhumid 0.50 < AI < 0.65 9.9%

As this index increases with wetter conditions, some hydrologists refer to this as a humidity index.

See also

[edit]

References

[edit]
  1. ^ "Did You Know? | National Centers for Environmental Information (NCEI)". www.ncei.noaa.gov. Retrieved 2023-05-18.
  • ^ Meigs, P. (1961) 'Map of arid zone', in L. D. Stamp (Editor) A History of Land Use in Arid Regions, UNESCO Arid Zone Research, Publication XVII, Paris, 388 p.
  • ^ Budyko, M. I. (1958) The Heat Balance of the Earth's Surface, trs. Nina A. Stepanova, US Department of Commerce, Washington, D.D., 259 p.
  • ^ UNCOD Secretariat (1977) Desertification: Its causes and consequences, Pergamon Press, 448 p.
  • ^ UNEP (1992) World Atlas of Desertification.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Aridity_index&oldid=1220706881"

    Categories: 
    Climatology
    Hydrology
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
     



    This page was last edited on 25 April 2024, at 12:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki