Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  



1.1  Inverse functions  





1.2  Algebraic functions  







2 Caveats  





3 Implicit differentiation  



3.1  Examples  



3.1.1  Example 1  





3.1.2  Example 2  





3.1.3  Example 3  







3.2  General formula for derivative of implicit function  







4 Implicit function theorem  





5 In algebraic geometry  





6 In differential equations  





7 Applications in economics  



7.1  Marginal rate of substitution  





7.2  Marginal rate of technical substitution  





7.3  Optimization  







8 See also  





9 References  





10 Further reading  





11 External links  














Implicit function






العربية
Bosanski
Català
Чӑвашла
Ελληνικά
Español
Euskara
فارسی
Français

ि
Bahasa Indonesia
Íslenska
Italiano
עברית
Қазақша
Кыргызча
Latviešu
Nederlands

Polski
Português
Русский
کوردی
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Implicit differentiation)

Inmathematics, an implicit equation is a relation of the form where R is a function of several variables (often a polynomial). For example, the implicit equation of the unit circleis

Animplicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments.[1]: 204–206  For example, the equation of the unit circle defines y as an implicit function of xif−1 ≤ x ≤ 1, and y is restricted to nonnegative values.

The implicit function theorem provides conditions under which some kinds of implicit equations define implicit functions, namely those that are obtained by equating to zero multivariable functions that are continuously differentiable.

Examples[edit]

Inverse functions[edit]

A common type of implicit function is an inverse function. Not all functions have a unique inverse function. If g is a function of x that has a unique inverse, then the inverse function of g, called g−1, is the unique function giving a solution of the equation

for x in terms of y. This solution can then be written as

Defining g−1 as the inverse of g is an implicit definition. For some functions g, g−1(y) can be written out explicitly as a closed-form expression — for instance, if g(x) = 2x − 1, then g−1(y) = 1/2(y + 1). However, this is often not possible, or only by introducing a new notation (as in the product log example below).

Intuitively, an inverse function is obtained from g by interchanging the roles of the dependent and independent variables.

Example: The product log is an implicit function giving the solution for x of the equation yxex = 0.

Algebraic functions[edit]

Analgebraic function is a function that satisfies a polynomial equation whose coefficients are themselves polynomials. For example, an algebraic function in one variable x gives a solution for y of an equation

where the coefficients ai(x) are polynomial functions of x. This algebraic function can be written as the right side of the solution equation y = f(x). Written like this, f is a multi-valued implicit function.

Algebraic functions play an important role in mathematical analysis and algebraic geometry. A simple example of an algebraic function is given by the left side of the unit circle equation:

Solving for y gives an explicit solution:

But even without specifying this explicit solution, it is possible to refer to the implicit solution of the unit circle equation as y = f(x), where f is the multi-valued implicit function.

While explicit solutions can be found for equations that are quadratic, cubic, and quarticiny, the same is not in general true for quintic and higher degree equations, such as

Nevertheless, one can still refer to the implicit solution y = f(x) involving the multi-valued implicit function f.

Caveats[edit]

Not every equation R(x, y) = 0 implies a graph of a single-valued function, the circle equation being one prominent example. Another example is an implicit function given by xC(y) = 0 where C is a cubic polynomial having a "hump" in its graph. Thus, for an implicit function to be a true (single-valued) function it might be necessary to use just part of the graph. An implicit function can sometimes be successfully defined as a true function only after "zooming in" on some part of the x-axis and "cutting away" some unwanted function branches. Then an equation expressing y as an implicit function of the other variables can be written.

The defining equation R(x, y) = 0 can also have other pathologies. For example, the equation x = 0 does not imply a function f(x) giving solutions for y at all; it is a vertical line. In order to avoid a problem like this, various constraints are frequently imposed on the allowable sorts of equations or on the domain. The implicit function theorem provides a uniform way of handling these sorts of pathologies.

Implicit differentiation[edit]

Incalculus, a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions.

To differentiate an implicit function y(x), defined by an equation R(x, y) = 0, it is not generally possible to solve it explicitly for y and then differentiate. Instead, one can totally differentiate R(x, y) = 0 with respect to x and y and then solve the resulting linear equation for dy/dx to explicitly get the derivative in terms of x and y. Even when it is possible to explicitly solve the original equation, the formula resulting from total differentiation is, in general, much simpler and easier to use.

Examples[edit]

Example 1[edit]

Consider

This equation is easy to solve for y, giving

where the right side is the explicit form of the function y(x). Differentiation then gives dy/dx = −1.

Alternatively, one can totally differentiate the original equation:

Solving for dy/dx gives

the same answer as obtained previously.

Example 2[edit]

An example of an implicit function for which implicit differentiation is easier than using explicit differentiation is the function y(x) defined by the equation

To differentiate this explicitly with respect to x, one has first to get

and then differentiate this function. This creates two derivatives: one for y ≥ 0 and another for y < 0.

It is substantially easier to implicitly differentiate the original equation:

giving

Example 3[edit]

Often, it is difficult or impossible to solve explicitly for y, and implicit differentiation is the only feasible method of differentiation. An example is the equation

It is impossible to algebraically express y explicitly as a function of x, and therefore one cannot find dy/dx by explicit differentiation. Using the implicit method, dy/dx can be obtained by differentiating the equation to obtain

where dx/dx = 1. Factoring out dy/dx shows that

which yields the result

which is defined for

General formula for derivative of implicit function[edit]

IfR(x, y) = 0, the derivative of the implicit function y(x) is given by[2]: §11.5 

where Rx and Ry indicate the partial derivativesofR with respect to x and y.

The above formula comes from using the generalized chain rule to obtain the total derivative — with respect to x — of both sides of R(x, y) = 0:

hence

which, when solved for dy/dx, gives the expression above.

Implicit function theorem[edit]

The unit circle can be defined implicitly as the set of points (x, y) satisfying x2 + y2 = 1. Around point A, y can be expressed as an implicit function y(x). (Unlike in many cases, here this function can be made explicit as g1(x) = 1 − x2.) No such function exists around point B, where the tangent space is vertical.

Let R(x, y) be a differentiable function of two variables, and (a, b) be a pair of real numbers such that R(a, b) = 0. If R/y ≠ 0, then R(x, y) = 0 defines an implicit function that is differentiable in some small enough neighbourhoodof(a, b); in other words, there is a differentiable function f that is defined and differentiable in some neighbourhood of a, such that R(x, f(x)) = 0 for x in this neighbourhood.

The condition R/y ≠ 0 means that (a, b) is a regular point of the implicit curve of implicit equation R(x, y) = 0 where the tangent is not vertical.

In a less technical language, implicit functions exist and can be differentiated, if the curve has a non-vertical tangent.[2]: §11.5 

In algebraic geometry[edit]

Consider a relation of the form R(x1, …, xn) = 0, where R is a multivariable polynomial. The set of the values of the variables that satisfy this relation is called an implicit curveifn = 2 and an implicit surfaceifn = 3. The implicit equations are the basis of algebraic geometry, whose basic subjects of study are the simultaneous solutions of several implicit equations whose left-hand sides are polynomials. These sets of simultaneous solutions are called affine algebraic sets.

In differential equations[edit]

The solutions of differential equations generally appear expressed by an implicit function.[3]

Applications in economics[edit]

Marginal rate of substitution[edit]

Ineconomics, when the level set R(x, y) = 0 is an indifference curve for the quantities x and y consumed of two goods, the absolute value of the implicit derivative dy/dx is interpreted as the marginal rate of substitution of the two goods: how much more of y one must receive in order to be indifferent to a loss of one unit of x.

Marginal rate of technical substitution[edit]

Similarly, sometimes the level set R(L, K) is an isoquant showing various combinations of utilized quantities L of labor and Kofphysical capital each of which would result in the production of the same given quantity of output of some good. In this case the absolute value of the implicit derivative dK/dL is interpreted as the marginal rate of technical substitution between the two factors of production: how much more capital the firm must use to produce the same amount of output with one less unit of labor.

Optimization[edit]

Often in economic theory, some function such as a utility function or a profit function is to be maximized with respect to a choice vector x even though the objective function has not been restricted to any specific functional form. The implicit function theorem guarantees that the first-order conditions of the optimization define an implicit function for each element of the optimal vector x* of the choice vector x. When profit is being maximized, typically the resulting implicit functions are the labor demand function and the supply functions of various goods. When utility is being maximized, typically the resulting implicit functions are the labor supply function and the demand functions for various goods.

Moreover, the influence of the problem's parametersonx* — the partial derivatives of the implicit function — can be expressed as total derivatives of the system of first-order conditions found using total differentiation.

See also[edit]

  • Functional equation
  • Level set
  • Marginal rate of substitution
  • Implicit function theorem
  • Logarithmic differentiation
  • Polygonizer
  • Related rates
  • Folium of Descartes
  • References[edit]

    1. ^ Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (Third ed.). New York: McGraw-Hill. ISBN 0-07-010813-7.
  • ^ a b Stewart, James (1998). Calculus Concepts And Contexts. Brooks/Cole Publishing Company. ISBN 0-534-34330-9.
  • ^ Kaplan, Wilfred (2003). Advanced Calculus. Boston: Addison-Wesley. ISBN 0-201-79937-5.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Implicit_function&oldid=1225120194#Implicit_differentiation"

    Categories: 
    Differential calculus
    Theorems in analysis
    Multivariable calculus
    Differential topology
    Algebraic geometry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages using sidebar with the child parameter
    Articles with J9U identifiers
    Articles with NKC identifiers
     



    This page was last edited on 22 May 2024, at 13:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki