Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formulation  





2 Hydrograph  





3 Catchment discharge  





4 Catchment effects on discharge and morphology  





5 Inflow  





6 See also  





7 References  





8 External links  














Discharge (hydrology)






Alemannisch
Aragonés
Azərbaycanca
Беларуская
Беларуская (тарашкевіца)

Bosanski
Català
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
Euskara
فارسی
Français
Galego
ГӀалгӀай

Hrvatski
Bahasa Indonesia
עברית
Magyar
Bahasa Melayu
Мокшень
Nordfriisk
Norsk bokmål
Norsk nynorsk
Polski
Português
Русский
Simple English
Srpskohrvatski / српскохрватски
Svenska
Українська
اردو
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Inflow (hydrology))

Inhydrology, discharge is the volumetric flow rate (volume per time, in units of m3/h or ft3/h) of a stream. It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m2 or ft2).[1] It includes any suspended solids (e.g. sediment), dissolved chemicals like CaCO
3
(aq), or biologic material (e.g. diatoms) in addition to the water itself. Terms may vary between disciplines. For example, a fluvial hydrologist studying natural river systems may define discharge as streamflow, whereas an engineer operating a reservoir system may equate it with outflow, contrasted with inflow.

Formulation[edit]

A discharge is a measure of the quantity of any fluid flow over unit time. The quantity may be either volume or mass. Thus the water discharge of a tap (faucet) can be measured with a measuring jug and a stopwatch. Here the discharge might be 1 litre per 15 seconds, equivalent to 67 ml/second or 4 litres/minute. This is an average measure. For measuring the discharge of a river we need a different method and the most common is the 'area-velocity' method. The area is the cross sectional area across a river and the average velocity across that section needs to be measured for a unit time, commonly a minute. Measurement of cross sectional area and average velocity, although simple in concept, are frequently non-trivial to determine.

The units that are typically used to express discharge in streams or rivers include m3/s (cubic meters per second), ft3/s (cubic feet per second or cfs) and/or acre-feet per day.[2]

A commonly applied methodology for measuring, and estimating, the discharge of a river is based on a simplified form of the continuity equation. The equation implies that for any incompressible fluid, such as liquid water, the discharge (Q) is equal to the product of the stream's cross-sectional area (A) and its mean velocity (), and is written as:

where

For example, the average discharge of the Rhine river in Europe is 2,200 cubic metres per second (78,000 cu ft/s) or 190,000,000 cubic metres (150,000 acre⋅ft) per day.

Because of the difficulties of measurement, a stream gauge is often used at a fixed location on the stream or river.

Hydrograph[edit]

A stream hydrograph. Increases in stream flow follow rainfallorsnowmelt. The gradual decay in flow after the peaks reflects diminishing supply from groundwater.

Ahydrograph is a graph showing the rate of flow (discharge) versus time past a specific point in a river, channel, or conduit carrying flow. The rate of flow is typically expressed in cubic meters or cubic feet per second (cms or cfs).

Hydrographs often relate changes of precipitation to changes in discharge over time.[3] It can also refer to a graph showing the volume of water reaching a particular outfall, or location in a sewerage network. Graphs are commonly used in the design of sewerage, more specifically, the design of surface water sewerage systems and combined sewers.

Catchment discharge[edit]

Torrente Pescone, one of the inflows of Lake Orta (Italy).

The catchment of a river above a certain location is determined by the surface area of all land which drains toward the river from above that point. The river's discharge at that location depends on the rainfall on the catchment or drainage area and the inflow or outflow of groundwater to or from the area, stream modifications such as dams and irrigation diversions, as well as evaporation and evapotranspiration from the area's land and plant surfaces. In storm hydrology, an important consideration is the stream's discharge hydrograph, a record of how the discharge varies over time after a precipitation event. The stream rises to a peak flow after each precipitation event, then falls in a slow recession. Because the peak flow also corresponds to the maximum water level reached during the event, it is of interest in flood studies. Analysis of the relationship between precipitation intensity and duration and the response of the stream discharge are aided by the concept of the unit hydrograph, which represents the response of stream discharge over time to the application of a hypothetical "unit" amount and duration of rainfall (e.g., half an inch over one hour). The amount of precipitation correlates to the volume of water (depending on the area of the catchment) that subsequently flows out of the river. Using the unit hydrograph method, actual historical rainfalls can be modeled mathematically to confirm characteristics of historical floods, and hypothetical "design storms" can be created for comparison to observed stream responses.

The relationship between the discharge in the stream at a given cross-section and the level of the stream is described by a rating curve. Average velocities and the cross-sectional area of the stream are measured for a given stream level. The velocity and the area give the discharge for that level. After measurements are made for several different levels, a rating table or rating curve may be developed. Once rated, the discharge in the stream may be determined by measuring the level, and determining the corresponding discharge from the rating curve. If a continuous level-recording device is located at a rated cross-section, the stream's discharge may be continuously determined.

Larger flows (higher discharges) can transport more sediment and larger particles downstream than smaller flows due to their greater force. Larger flows can also erode stream banks and damage public infrastructure.

Catchment effects on discharge and morphology[edit]

G. H. Dury and M. J. Bradshaw are two geographers who devised models showing the relationship between discharge and other variables in a river. The Bradshaw model described how pebble size and other variables change from source to mouth; while Dury considered the relationships between discharge and variables such as stream slope and friction. These follow from the ideas presented by Leopold, Wolman and Miller in Fluvial Processes in Geomorphology.[4] and on land use affecting river discharge and bedload supply.[5]

Inflow[edit]

Visual description of Hydrologic Cycle

Inflow is the sum of processes within the hydrologic cycle that increase the water levels of bodies of water.[6] Most precipitation occurs directly over bodies of water such as the oceans, or on land as surface runoff.[7] A portion of runoff enters streams and rivers, and another portion soaks into the ground as groundwater seepage.[8] The rest soaks into the ground as infiltration, some of which infiltrates deep into the ground to replenish aquifers.[9]

See also[edit]

References[edit]

  • ^ Dunne, T., and Leopold, L.B., 1978, Water in Environmental Planning: San Francisco, Calif., W.H. Freeman, pp. 257–258.
  • ^ Sherman, LeRoy K. (1932). "The relation of hydrographs of runoff to size and character of drainage-basins". Transactions, American Geophysical Union. 13 (1): 332–339. Bibcode:1932TrAGU..13..332S. doi:10.1029/TR013i001p00332. ISSN 0002-8606.
  • ^ L. B. Leopold, M. G. Wolman J. P. and Miller, Fluvial Processes in Geomorphology, W. H. Freeman, San Francisco, 1964.
  • ^ G. M. Kondolf, H. Piégay and N. Landon, "Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments", Geomorphology, 45/1–2, pp. 35–51.
  • ^ "The Hydrologic Cycle | Freshwater Inflows". freshwaterinflow.org. Retrieved 2020-12-09.
  • ^ DOC, NOAA. "Description of the Hydrologic Cycle". www.nwrfc.noaa.gov. Retrieved 2020-12-09.
  • ^ "Groundwater Flows Underground". usgs.gov. Retrieved 2020-12-09.
  • ^ "Precipitation and the Water Cycle". usgs.gov. Retrieved 2020-12-09.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Discharge_(hydrology)&oldid=1217695107"

    Categories: 
    Hydrology
    Rivers
    Temporal rates
    Physical quantities
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from December 2023
    All articles needing additional references
    Articles with excerpts
    Wikipedia articles needing rewrite from December 2023
    All articles needing rewrite
     



    This page was last edited on 7 April 2024, at 09:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki