Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Broadening in laser systems  





2 Semiconductors  





3 See also  





4 References  














Homogeneous broadening







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Inhomogeneous broadening)

Homogeneous broadening is a type of emission spectrum broadening in which all atoms radiating from a specific level under consideration radiate with equal opportunity.[1] If an optical emitter (e.g. an atom) shows homogeneous broadening, its spectral linewidth is its natural linewidth, with a Lorentzian profile.

Broadening in laser systems[edit]

Broadening in laser physics is a physical phenomenon that affects the spectroscopic line shape of the laser emission profile. The laser emission is due to the (excitation and subsequent) relaxation of a quantum system (atom, molecule, ion, etc.) between an excited state (higher in energy) and a lower one. These states can be thought of as the eigenstates of the energy operator. The difference in energy between these states is proportional to the frequency/wavelength of the photon emitted. Since this energy difference has a fluctuation, then the frequency/wavelength of the "macroscopic emission" (the beam) will have a certain width (i.e. it will be "broadened" with respect to the "ideal" perfectly monochromatic emission).

Depending on the nature of the fluctuation, there can be two types of broadening. If the fluctuation in the frequency/wavelength is due to a phenomenon that is the same for each quantum emitter, there is homogeneous broadening, while if each quantum emitter has a different type of fluctuation, the broadening is inhomogeneous.

Examples of situations where the fluctuation is the same for each system (homogeneous broadening) are natural or lifetime broadening, and collisional or pressure broadening. In these cases each system is affected "on average" in the same way (e.g. by the collisions due to the pressure).

The most frequent situation in solid state systems where the fluctuation is different for each system (inhomogeneous broadening) is when because of the presence of dopants, the local electric field is different for each emitter, and so the Stark effect changes the energy levels in an inhomogeneous way. The homogeneous broadened emission line will have a Lorentzian profile (i.e. will be best fitted by a Lorentzian function), while the inhomogeneously broadened emission will have a Gaussian profile. One or more phenomena may be present at the same time, but if one has a wider fluctuation, it will be the one responsible for the character of the broadening.

These effects are not limited to laser systems, or even to optical spectroscopy. They are relevant in magnetic resonance as well, where the frequency range is in the radiofrequency region for NMR, and one can also refer to these effects in EPR where the lineshape is observed at fixed (microwave) frequency and in a magnetic field range.

Semiconductors[edit]

In a semiconductors, if all oscillations have the same eigenfrequency and the broadening in the imaginary part of the dielectric function results only from a finite damping , the system is said to be homogeneously broadened, and has a Lorentzian profile. If the system contains many oscillators with slightly different frequencies about however, then the system is inhomogeneously broadened.[2]

See also[edit]

References[edit]

  1. ^ Bass, Michael; Virendra N. Mahajan; Eric Van Stryland (2009). Handbook of Optics: Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry. McGraw Hill Professional. p. 16.5. ISBN 978-0-07-149890-6.
  • ^ Klingshirn, Claus F. (6 July 2012). Semiconductor Optics (4 ed.). Springer. p. 88. ISBN 978-364228362-8.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Homogeneous_broadening&oldid=1106609356"

    Categories: 
    Laser science
    Atomic, molecular, and optical physics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from August 2011
    All articles needing additional references
     



    This page was last edited on 25 August 2022, at 13:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki