Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Network capacity  





2 Network consumption  





3 Maximum throughput  





4 Multimedia  





5 Web hosting  





6 Internet connections  





7 Edholm's law  





8 References  














Bandwidth (computing)






العربية
Azərbaycanca

Български
Català
Dansk
Español
فارسی

ि
Italiano
עברית
Kiswahili
Latviešu
Македонски
Bahasa Melayu
Português
Română
Shqip
Simple English

Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Internet speed)

Incomputing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth,[1] data bandwidth,[2]ordigital bandwidth.[3][4]

This definition of bandwidth is in contrast to the field of signal processing, wireless communications, modem data transmission, digital communications, and electronics,[citation needed] in which bandwidth is used to refer to analog signal bandwidth measured in hertz, meaning the frequency range between lowest and highest attainable frequency while meeting a well-defined impairment level in signal power. The actual bit rate that can be achieved depends not only on the signal bandwidth but also on the noise on the channel.

Network capacity

[edit]

The term bandwidth sometimes defines the net bit rate peak bit rate, information rate, or physical layer useful bit rate, channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwidth tests measure the maximum throughput of a computer network. The maximum rate that can be sustained on a link is limited by the Shannon–Hartley channel capacity for these communication systems, which is dependent on the bandwidth in hertz and the noise on the channel.

Network consumption

[edit]

The consumed bandwidth in bit/s, corresponds to achieved throughputorgoodput, i.e., the average rate of successful data transfer through a communication path. The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth allocation), etc. A bit stream's bandwidth is proportional to the average consumed signal bandwidth in hertz (the average spectral bandwidth of the analog signal representing the bit stream) during a studied time interval.

Channel bandwidth may be confused with useful data throughput (or goodput). For example, a channel with x bit/s may not necessarily transmit data at x rate, since protocols, encryption, and other factors can add appreciable overhead. For instance, much internet traffic uses the transmission control protocol (TCP), which requires a three-way handshake for each transaction. Although in many modern implementations the protocol is efficient, it does add significant overhead compared to simpler protocols. Also, data packets may be lost, which further reduces the useful data throughput. In general, for any effective digital communication, a framing protocol is needed; overhead and effective throughput depends on implementation. Useful throughput is less than or equal to the actual channel capacity minus implementation overhead.

Maximum throughput

[edit]

The asymptotic bandwidth (formally asymptotic throughput) for a network is the measure of maximum throughput for a greedy source, for example when the message size (the number of packets per second from a source) approaches close to the maximum amount.[5]

Asymptotic bandwidths are usually estimated by sending a number of very large messages through the network, measuring the end-to-end throughput. As with other bandwidths, the asymptotic bandwidth is measured in multiples of bits per seconds. Since bandwidth spikes can skew the measurement, carriers often use the 95th percentile method. This method continuously measures bandwidth usage and then removes the top 5 percent.[6]

Multimedia

[edit]

Digital bandwidth may also refer to: multimedia bit rateoraverage bitrate after multimedia data compression (source coding), defined as the total amount of data divided by the playback time.

Due to the impractically high bandwidth requirements of uncompressed digital media, the required multimedia bandwidth can be significantly reduced with data compression.[7] The most widely used data compression technique for media bandwidth reduction is the discrete cosine transform (DCT), which was first proposed by Nasir Ahmed in the early 1970s.[8] DCT compression significantly reduces the amount of memory and bandwidth required for digital signals, capable of achieving a data compression ratio of up to 100:1 compared to uncompressed media.[9]

Web hosting

[edit]

InWeb hosting service, the term bandwidth is often incorrectly used to describe the amount of data transferred to or from the website or server within a prescribed period of time, for example bandwidth consumption accumulated over a month measured in gigabytes per month.[citation needed][10] The more accurate phrase used for this meaning of a maximum amount of data transfer each month or given period is monthly data transfer.

A similar situation can occur for end-user Internet service providers as well, especially where network capacity is limited (for example in areas with underdeveloped internet connectivity and on wireless networks).

Internet connections

[edit]

This table shows the maximum bandwidth (the physical layer net bit rate) of common Internet access technologies. For more detailed lists see

Bit rate Connection type
56 kbit/s Dialup
1.5 Mbit/s ADSL Lite
1.544 Mbit/s T1/DS1
2.048 Mbit/s E1 / E-carrier
4 Mbit/s ADSL1
10 Mbit/s Ethernet
11 Mbit/s Wireless 802.11b
24 Mbit/s ADSL2+
44.736 Mbit/s T3/DS3
54 Mbit/s Wireless 802.11g
100 Mbit/s Fast Ethernet
155 Mbit/s OC3
600 Mbit/s Wireless 802.11n
622 Mbit/s OC12
1 Gbit/s Gigabit Ethernet
1.3 Gbit/s Wireless 802.11ac
2.5 Gbit/s OC48
5 Gbit/s SuperSpeed USB
7 Gbit/s Wireless 802.11ad
9.6 Gbit/s OC192
10 Gbit/s 10 Gigabit Ethernet, SuperSpeed USB 10 Gbit/s
20 Gbit/s SuperSpeed USB 20 Gbit/s
40 Gbit/s Thunderbolt 3
100 Gbit/s 100 Gigabit Ethernet

Edholm's law

[edit]

Edholm's law, proposed by and named after Phil Edholm in 2004,[11] holds that the bandwidth of telecommunication networks double every 18 months, which has proven to be true since the 1970s.[11][12] The trend is evident in the cases of Internet,[11] cellular (mobile), wireless LAN and wireless personal area networks.[12]

The MOSFET (metal–oxide–semiconductor field-effect transistor) is the most important factor enabling the rapid increase in bandwidth.[13] The MOSFET (MOS transistor) was invented by Mohamed M. Atalla and Dawon KahngatBell Labs in 1959,[14][15][16] and went on to become the basic building block of modern telecommunications technology.[17][18] Continuous MOSFET scaling, along with various advances in MOS technology, has enabled both Moore's law (transistor countsinintegrated circuit chips doubling every two years) and Edholm's law (communication bandwidth doubling every 18 months).[13]

References

[edit]
  1. ^ Douglas Comer, Computer Networks and Internets, page 99 ff, Prentice Hall 2008.
  • ^ Fred Halsall, to data+communications and computer networks, page 108, Addison-Wesley, 1985.
  • ^ Cisco Networking Academy Program: CCNA 1 and 2 companion guide, Volym 1–2, Cisco Academy 2003
  • ^ Behrouz A. Forouzan, Data communications and networking, McGraw-Hill, 2007
  • ^ Chou, C. Y.; et al. (2006). "Modeling Message Passing Overhead". In Chung, Yeh-Ching; Moreira, José E. (eds.). Advances in Grid and Pervasive Computing: First International Conference, GPC 2006. Springer. pp. 299–307. ISBN 3540338098.
  • ^ "What is Bandwidth? - Definition and Details". www.paessler.com. Retrieved 2019-04-18.
  • ^ Lee, Jack (2005). Scalable Continuous Media Streaming Systems: Architecture, Design, Analysis and Implementation. John Wiley & Sons. p. 25. ISBN 9780470857649.
  • ^ Stanković, Radomir S.; Astola, Jaakko T. (2012). "Reminiscences of the Early Work in DCT: Interview with K.R. Rao" (PDF). Reprints from the Early Days of Information Sciences. 60. Retrieved 13 October 2019.
  • ^ Lea, William (1994). Video on demand: Research Paper 94/68. House of Commons Library. Archived from the original on 20 September 2019. Retrieved 20 September 2019.
  • ^ Low, Jerry (27 March 2022). "How Much Hosting Bandwidth Do I Need For My Website?". WHSR.
  • ^ a b c Cherry, Steven (2004). "Edholm's law of bandwidth". IEEE Spectrum. 41 (7): 58–60. doi:10.1109/MSPEC.2004.1309810. S2CID 27580722.
  • ^ a b Deng, Wei; Mahmoudi, Reza; van Roermund, Arthur (2012). Time Multiplexed Beam-Forming with Space-Frequency Transformation. New York: Springer. p. 1. ISBN 9781461450450.
  • ^ a b Jindal, Renuka P. (2009). "From millibits to terabits per second and beyond - over 60 years of innovation". 2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6. doi:10.1109/EDST.2009.5166093. ISBN 978-1-4244-3831-0. S2CID 25112828.
  • ^ "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  • ^ Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  • ^ "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019.
  • ^ "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Archived from the original on 2021-11-07. Retrieved 21 July 2019.
  • ^ Raymer, Michael G. (2009). The Silicon Web: Physics for the Internet Age. CRC Press. p. 365. ISBN 9781439803127.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Bandwidth_(computing)&oldid=1230181686"

    Categories: 
    Network performance
    Information theory
    Temporal rates
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use American English from July 2023
    All Wikipedia articles written in American English
    All articles with unsourced statements
    Articles with unsourced statements from January 2018
    Articles with unsourced statements from November 2011
     



    This page was last edited on 21 June 2024, at 05:59 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki