Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Fourth derivative (snap/jounce)  





2 Fifth derivative  





3 Sixth derivative  





4 References  





5 External links  














Fourth, fifth, and sixth derivatives of position






العربية
Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Jounce)

Time-derivatives of position

Inphysics, the fourth, fifth and sixth derivatives of position are defined as derivatives of the position vector with respect to time – with the first, second, and third derivatives being velocity, acceleration, and jerk, respectively. The higher-order derivatives are less common than the first three;[1][2] thus their names are not as standardized, though the concept of a minimum snap trajectory has been used in robotics and is implemented in MATLAB.[3]

The fourth derivative is referred to as snap, leading the fifth and sixth derivatives to be "sometimes somewhat facetiously"[4] called crackle and pop, inspired by the Rice Krispies mascots Snap, Crackle, and Pop.[5] The fourth derivative is also called jounce.[4]

Fourth derivative (snap/jounce)

[edit]

Snap,[6] or jounce,[2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time.[4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: Incivil engineering, the design of railway tracks and roads involves the minimization of snap, particularly around bends with different radii of curvature. When snap is constant, the jerk changes linearly, allowing for a smooth increase in radial acceleration, and when, as is preferred, the snap is zero, the change in radial acceleration is linear. The minimization or elimination of snap is commonly done using a mathematical clothoid function. Minimizing snap improves the performance of machine tools and roller coasters.[1]

The following equations are used for constant snap:

where

  • is constant snap,
  • is initial jerk,
  • is final jerk,
  • is initial acceleration,
  • is final acceleration,
  • is initial velocity,
  • is final velocity,
  • is initial position,
  • is final position,
  • is time between initial and final states.
  • The notation (used by Visser[4]) is not to be confused with the displacement vector commonly denoted similarly.

    The dimensions of snap are distance per fourth power of time (LT−4). The corresponding SI unit is metre per second to the fourth power, m/s4, m⋅s−4.

    Fifth derivative

    [edit]

    The fifth derivative of the position vector with respect to time is sometimes referred to as crackle.[5] It is the rate of change of snap with respect to time.[5][4] Crackle is defined by any of the following equivalent expressions:

    The following equations are used for constant crackle:

    where

    •  : constant crackle,
  •  : initial snap,
  •  : final snap,
  •  : initial jerk,
  •  : final jerk,
  •  : initial acceleration,
  •  : final acceleration,
  •  : initial velocity,
  •  : final velocity,
  •  : initial position,
  •  : final position,
  •  : time between initial and final states.
  • The dimensions of crackle are LT−5. The corresponding SI unit is m/s5.

    Sixth derivative

    [edit]

    The sixth derivative of the position vector with respect to time is sometimes referred to as pop.[5] It is the rate of change of crackle with respect to time.[5][4] Pop is defined by any of the following equivalent expressions:

    The following equations are used for constant pop:

    where

    •  : constant pop,
  •  : initial crackle,
  •  : final crackle,
  •  : initial snap,
  •  : final snap,
  •  : initial jerk,
  •  : final jerk,
  •  : initial acceleration,
  •  : final acceleration,
  •  : initial velocity,
  •  : final velocity,
  •  : initial position,
  •  : final position,
  •  : time between initial and final states.
  • The dimensions of pop are LT−6. The corresponding SI unit is m/s6.

    References

    [edit]
    1. ^ a b Eager, David; Pendrill, Ann-Marie; Reistad, Nina (2016-10-13). "Beyond velocity and acceleration: jerk, snap and higher derivatives". European Journal of Physics. 37 (6): 065008. Bibcode:2016EJPh...37f5008E. doi:10.1088/0143-0807/37/6/065008. hdl:10453/56556. ISSN 0143-0807. S2CID 19486813.
  • ^ a b c Gragert, Stephanie; Gibbs, Philip (November 1998). "What is the term used for the third derivative of position?". Usenet Physics and Relativity FAQ. Math Dept., University of California, Riverside. Retrieved 2015-10-24.
  • ^ "MATLAB Documentation: minsnappolytraj".
  • ^ a b c d e f g Visser, Matt (31 March 2004). "Jerk, snap and the cosmological equation of state". Classical and Quantum Gravity. 21 (11): 2603–2616. arXiv:gr-qc/0309109. Bibcode:2004CQGra..21.2603V. doi:10.1088/0264-9381/21/11/006. ISSN 0264-9381. S2CID 250859930. Snap [the fourth time derivative] is also sometimes called jounce. The fifth and sixth time derivatives are sometimes somewhat facetiously referred to as crackle and pop.
  • ^ a b c d e f Thompson, Peter M. (5 May 2011). "Snap, Crackle, and Pop" (PDF). AIAA Info. Hawthorne, California: Systems Technology. p. 1. Archived from the original on 26 June 2018. Retrieved 3 March 2017. The common names for the first three derivatives are velocity, acceleration, and jerk. The not so common names for the next three derivatives are snap, crackle, and pop.{{cite web}}: CS1 maint: unfit URL (link)
  • ^ Mellinger, Daniel; Kumar, Vijay (2011). "Minimum snap trajectory generation and control for quadrotors". 2011 IEEE International Conference on Robotics and Automation. pp. 2520–2525. doi:10.1109/ICRA.2011.5980409. ISBN 978-1-61284-386-5. S2CID 18169351.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fourth,_fifth,_and_sixth_derivatives_of_position&oldid=1221376498#Fourth_derivative"

    Categories: 
    Acceleration
    Kinematic properties
    Time in physics
    Vector physical quantities
    Hidden categories: 
    CS1 maint: unfit URL
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 29 April 2024, at 15:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki