Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Decay series  





2 Formula  





3 Obtaining the data  





4 Assumptions  





5 Applications  





6 Notes  





7 References  





8 Further reading  














KAr dating






العربية
Bosanski
Català
Deutsch
Español
فارسی
Français
Gaeilge

Italiano
עברית
Македонски

Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Simple English
Suomi
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from K-Ar)

Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotopeofpotassium (K) into argon (Ar). Potassium is a common element found in many materials, such as feldspars, micas, clay minerals, tephra, and evaporites. In these materials, the decay product 40
Ar
is able to escape the liquid (molten) rock but starts to accumulate when the rock solidifies (recrystallizes). The amount of argon sublimation that occurs is a function of the purity of the sample, the composition of the mother material, and a number of other factors. These factors introduce error limits on the upper and lower bounds of dating, so that the final determination of age is reliant on the environmental factors during formation, melting, and exposure to decreased pressure or open air. Time since recrystallization is calculated by measuring the ratio of the amount of 40
Ar
accumulated to the amount of 40
K
remaining. The long half-lifeof40
K
allows the method to be used to calculate the absolute age of samples older than a few thousand years.[1]

The quickly cooled lavas that make nearly ideal samples for K–Ar dating also preserve a record of the direction and intensity of the local magnetic field as the sample cooled past the Curie temperature of iron. The geomagnetic polarity time scale was calibrated largely using K–Ar dating.[2]

Decay series[edit]

Potassium naturally occurs in 3 isotopes: 39
K
(93.2581%), 40
K
(0.0117%), 41
K
(6.7302%). 39
K
and 41
K
are stable. The 40
K
isotope is radioactive; it decays with a half-lifeof1.248×109 yearsto40
Ca
and 40
Ar
. Conversion to stable 40
Ca
occurs via electron emission (beta decay) in 89.3% of decay events. Conversion to stable 40
Ar
occurs via electron capture in the remaining 10.7% of decay events.[3]

Argon, being a noble gas, is a minor component of most rock samples of geochronological interest: It does not bind with other atoms in a crystal lattice. When 40
K
decays to 40
Ar
; the atom typically remains trapped within the lattice because it is larger than the spaces between the other atoms in a mineral crystal. But it can escape into the surrounding region when the right conditions are met, such as changes in pressure or temperature. 40
Ar
atoms can diffuse through and escape from molten magma because most crystals have melted and the atoms are no longer trapped. Entrained argon – diffused argon that fails to escape from the magma – may again become trapped in crystals when magma cools to become solid rock again. After the recrystallization of magma, more 40
K
will decay and 40
Ar
will again accumulate, along with the entrained argon atoms, trapped in the mineral crystals. Measurement of the quantity of 40
Ar
atoms is used to compute the amount of time that has passed since a rock sample has solidified.

Despite 40
Ca
being the favored daughter nuclide, it is rarely useful in dating because calcium is so common in the crust, with 40
Ca
being the most abundant isotope. Thus, the amount of calcium originally present is not known and can vary enough to confound measurements of the small increases produced by radioactive decay.

Formula[edit]

The ratio of the amount of 40
Ar
to that of 40
K
is directly related to the time elapsed since the rock was cool enough to trap the Ar by the equation:

,

where:

The scale factor 0.109 corrects for the unmeasured fraction of 40
K
which decayed into 40
Ca
; the sum of the measured 40
K
and the scaled amount of 40
Ar
gives the amount of 40
K
which was present at the beginning of the elapsed time period. In practice, each of these values may be expressed as a proportion of the total potassium present, as only relative, not absolute, quantities are required.

Obtaining the data[edit]

To obtain the content ratio of isotopes 40
Ar
to40
K
in a rock or mineral, the amount of Ar is measured by mass spectrometry of the gases released when a rock sample is volatilized in vacuum. The potassium is quantified by flame photometryoratomic absorption spectroscopy.

The amount of 40
K
is rarely measured directly. Rather, the more common 39
K
is measured and that quantity is then multiplied by the accepted ratio of 40
K
/39
K
(i.e., 0.0117%/93.2581%, see above).

The amount of 40
Ar
is also measured to assess how much of the total argon is atmospheric in origin.

Assumptions[edit]

According to McDougall & Harrison (1999, p. 11) the following assumptions must be true for computed dates to be accepted as representing the true age of the rock:[4]

Both flame photometry and mass spectrometry are destructive tests, so particular care is needed to ensure that the aliquots used are truly representative of the sample. Ar–Ar dating is a similar technique that compares isotopic ratios from the same portion of the sample to avoid this problem.

Applications[edit]

Due to the long half-lifeof40
K
, the technique is most applicable for dating minerals and rocks more than 100,000 years old. For shorter timescales, it is unlikely that enough 40
Ar
will have had time to accumulate to be accurately measurable. K–Ar dating was instrumental in the development of the geomagnetic polarity time scale.[2] Although it finds the most utility in geological applications, it plays an important role in archaeology. One archeological application has been in bracketing the age of archeological deposits at Olduvai Gorge by dating lava flows above and below the deposits.[8] It has also been indispensable in other early east African sites with a history of volcanic activity such as Hadar, Ethiopia.[8] The K–Ar method continues to have utility in dating clay mineral diagenesis.[9] In 2017, the successful dating of illite formed by weathering was reported.[10] This finding indirectly lead to the dating of the strandflatofWestern Norway from where the illite was sampled.[10] Clay minerals are less than 2 μm thick and cannot easily be irradiated for Ar–Ar analysis because Ar recoils from the crystal lattice.

In 2013, the K–Ar method was used by the Mars Curiosity rover to date a rock on the Martian surface, the first time a rock has been dated from its mineral ingredients while situated on another planet.[11][12]

Notes[edit]

  • ^ ENSDF decay data in the MIRD format for 40
    Ar
    (Report). National Nuclear Data Center. December 2019. Retrieved 29 December 2019.
  • ^ McDougall & Harrison 1999, p. 11: "As with all isotopic dating methods, there are a number of assumptions that must be fulfilled for a K–Ar age to relate to events in the geological history of the region being studied."
  • ^ McDougall & Harrison 1999, p. 14
  • ^ 40
    Ar
    * means radiogenic argon
  • ^ McDougall & Harrison 1999, pp. 9–12
  • ^ a b Tattersall 1995
  • ^ Aronson & Lee 1986
  • ^ a b Fredin, Ola; Viola, Giulio; Zwingmann, Horst; Sørlie, Ronald; Brönner, Marco; Lie, Jan-Erik; Margrethe Grandal, Else; Müller, Axel; Margeth, Annina; Vogt, Christoph; Knies, Jochen (2017). "The inheritance of a Mesozoic landscape in western Scandinavia". Nature. 8: 14879. Bibcode:2017NatCo...814879F. doi:10.1038/ncomms14879. PMC 5477494. PMID 28452366.
  • ^ NASA Curiosity: First Mars Age Measurement and Human Exploration Help, Jet Propulsion Laboratory, 9 December 2013
  • ^ Martian rock-dating technique could point to signs of life in space, University of Queensland, 13 December 2013
  • References[edit]

    Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=K–Ar_dating&oldid=1183619504"

    Categories: 
    Radiometric dating
    Argon
    Potassium
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from July 2023
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 5 November 2023, at 13:37 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki