Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Types of lambda baryons  





3 See also  





4 References  





5 Further reading  














Lambda baryon






Català
Čeština
Deutsch
Español
فارسی
Français

Hrvatski
Italiano
עברית
Latviešu
Magyar
Македонски

Norsk bokmål
Polski
Português
Русский
Slovenčina
Slovenščina
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Lambda baryons)

Lambda baryon
Quark structure of the lambda baryon.
Composition

  • Λ0
    :
    u

    d

    s

  • Λ+
    c
    :
    u

    d

    c

  • Λ0
    b
    :
    u

    d

    b
  • StatisticsFermionic
    FamilyBaryons
    InteractionsStrong, weak, electromagnetic, and gravity
    Types3
    Mass

  • Λ+
    c
    : 2286.46±0.14 MeV/c2

  • Λ0
    b
    : 5619.60±0.17 MeV/c2
  • Spin12
    Isospin0

    The lambda baryons (Λ) are a family of subatomic hadron particles containing one up quark, one down quark, and a third quark from a higher flavour generation, in a combination where the quantum wave function changes sign upon the flavour of any two quarks being swapped (thus slightly different from a neutral sigma baryon,
    Σ0
    ). They are thus baryons, with total isospin of 0, and have either neutral electric charge or the elementary charge +1.

    Overview[edit]

    The lambda baryon
    Λ0
    was first discovered in October 1950, by V. D. Hopper and S. Biswas of the University of Melbourne, as a neutral V particle with a proton as a decay product, thus correctly distinguishing it as a baryon, rather than a meson,[2] i.e. different in kind from the K meson discovered in 1947 by Rochester and Butler;[3] they were produced by cosmic rays and detected in photographic emulsions flown in a balloon at 70,000 feet (21,000 m).[4] Though the particle was expected to live for ~10−23 s,[5] it actually survived for ~10−10 s.[6] The property that caused it to live so long was dubbed strangeness and led to the discovery of the strange quark.[5] Furthermore, these discoveries led to a principle known as the conservation of strangeness, wherein lightweight particles do not decay as quickly if they exhibit strangeness (because non-weak methods of particle decay must preserve the strangeness of the decaying baryon).[5] The
    Λ0
    with its uds quark decays via weak force to a nucleon and a pion − either Λ → p + πorΛ → n + π0.

    In 1974 and 1975, an international team at the Fermilab that included scientists from Fermilab and seven European laboratories under the leadership of Eric Burhop carried out a search for a new particle, the existence of which Burhop had predicted in 1963. He had suggested that neutrino interactions could create short-lived (perhaps as low as 10−14 s) particles that could be detected with the use of nuclear emulsion. Experiment E247 at Fermilab successfully detected particles with a lifetime of the order of 10−13 s. A follow-up experiment WA17 with the SPS confirmed the existence of the
    Λ+
    c
    (charmed lambda baryon), with a flight time of (7.3±0.1)×10−13 s.[7][8]

    In 2011, the international team at JLab used high-resolution spectrometer measurements of the reaction H(e, e′K+)X at small Q2 (E-05-009) to extract the pole position in the complex-energy plane (primary signature of a resonance) for the Λ(1520) with mass = 1518.8 MeV and width = 17.2 MeV which seem to be smaller than their Breit–Wigner values.[9] This was the first determination of the pole position for a hyperon.

    The lambda baryon has also been observed in atomic nuclei called hypernuclei. These nuclei contain the same number of protons and neutrons as a known nucleus, but also contains one or in rare cases two lambda particles.[10] In such a scenario, the lambda slides into the center of the nucleus (it is not a proton or a neutron, and thus is not affected by the Pauli exclusion principle), and it binds the nucleus more tightly together due to its interaction via the strong force. In a lithium isotope (7
    Λ
    Li
    ), it made the nucleus 19% smaller.[11]

    Types of lambda baryons[edit]

    Lambda baryons are usually represented by the symbols
    Λ0
    ,

    Λ+
    c
    ,

    Λ0
    b
    ,
    and
    Λ+
    t
    .
    In this notation, the superscript character indicates whether the particle is electrically neutral (0) or carries a positive charge (+). The subscript character, or its absence, indicates whether the third quark is a strange quark (
    Λ0
    )
    (no subscript), a charm quark (
    Λ+
    c
    )
    ,
    abottom quark (
    Λ0
    b
    )
    ,
    or a top quark (
    Λ+
    t
    )
    .
    Physicists expect to not observe a lambda baryon with a top quark, because the Standard Model of particle physics predicts that the mean lifetime of top quarks is roughly 5×10−25 seconds;[12] that is about 1/20 of the mean timescale for strong interactions, which indicates that the top quark would decay before a lambda baryon could form a hadron.

    The symbols encountered in this list are: I (isospin), J (total angular momentum quantum number), P (parity), Q (charge), S (strangeness), C (charmness), B (bottomness), T (topness), u (up quark), d (down quark), s (strange quark), c (charm quark), b (bottom quark), t (top quark), as well as other subatomic particles.

    Antiparticles are not listed in the table; however, they simply would have all quarks changed to antiquarks, and Q, B, S, C, B′, T, would be of opposite signs. I, J, and P values in red have not been firmly established by experiments, but are predicted by the quark model and are consistent with the measurements.[13][14] The top lambda (
    Λ+
    t
    )
    is listed for comparison, but is expected to never be observed, because top quarks decay before they have time to form hadrons.[15]

    Lambda baryons
    Particle name Symbol Quark
    content
    Rest mass (MeV/c²) I JP Q (e) S C B T Mean lifetime (s) Commonly decays to
    Lambda[6]
    Λ0

    u

    d

    s
    1115.683±0.006 0 1/2+ 0 −1 0 0 0 (2.631±0.020)×10−10
    p+
    +
    π
    or


    n0
    +
    π0
    charmed lambda[16]
    Λ+
    c

    u

    d

    c
    2286.46±0.14 0 1/2+ +1 0 +1 0 0 (2.00±0.06)×10−13 decay modes[17]
    bottom lambda[18]
    Λ0
    b

    u

    d

    b
    5620.2±1.6 0 1/2+ 0 0 0 −1 0 1.409+0.055
    −0.054
    ×10−12
    Decay modes[19]
    top lambda
    Λ+
    t

    u

    d

    t
    0 1/2+ +1 0 0 0 +1

    ^ Particle unobserved, because the top-quark decays before it has sufficient time to bind into a hadron ("hadronizes").

    The following table compares the nearly-identical Lambda and neutral Sigma baryons:

    Neutral strange baryons
    Particle name Symbol Quark
    content
    Rest mass (MeV/c²) I JP Q (e) S C B T Mean lifetime (s) Commonly decays to
    Lambda[6]
    Λ0

    u

    d

    s
    1115.683±0.006 0 1/2+ 0 −1 0 0 0 (2.631±0.020)×10−10
    p+
    +
    π
    or


    n0
    +
    π0
    Sigma[20]
    Σ0

    u

    d

    s
    1,192.642 ± 0.024 1 1/2+ 0 −1 0 0 0 7.4 ± 0.7 × 10−20
    Λ0
    +
    γ
    (100%)

    See also[edit]

    References[edit]

    1. ^ Zyla, P. A.; et al. (Particle Data Group) (2020). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2020 (8): 083C01. Bibcode:2020PTEP.2020h3C01P. doi:10.1093/ptep/ptaa104. hdl:11585/772320.
  • ^ Hopper, V.D.; Biswas, S. (1950). "Evidence Concerning the Existence of the New Unstable Elementary Neutral Particle". Phys. Rev. 80 (6): 1099. Bibcode:1950PhRv...80.1099H. doi:10.1103/physrev.80.1099.
  • ^ Rochester, G. D.; Butler, C. C. (1947). "Evidence for the Existence of New Unstable Elementary Particles". Nature. 160 (4077): 855–7. Bibcode:1947Natur.160..855R. doi:10.1038/160855a0. PMID 18917296. S2CID 33881752.
  • ^ Pais, Abraham (1986). Inward Bound. Oxford University Press. pp. 21, 511–517. ISBN 978-0-19-851971-3.
  • ^ a b c The Strange Quark
  • ^ a b c Amsler, C.; et al. (Particle Data Group) (2008). "
    Λ
    "
    (PDF). Particle listings. Lawrence Berkeley Laboratory.
  • ^ Massey, Harrie; Davis, D. H. (November 1981). "Eric Henry Stoneley Burhop 31 January 1911 – 22 January 1980". Biographical Memoirs of Fellows of the Royal Society. 27: 131–152. doi:10.1098/rsbm.1981.0006. JSTOR 769868. S2CID 123018692.
  • ^ Burhop, Eric (1933). The Band Spectra of Diatomic Molecules (MSc). University of Melbourne.
  • ^ Qiang, Y.; et al. (2010). "Properties of the Lambda(1520) resonance from high-precision electroproduction data". Physics Letters B. 694 (2): 123–128. arXiv:1003.5612. Bibcode:2010PhLB..694..123Q. doi:10.1016/j.physletb.2010.09.052. S2CID 119290870.
  • ^ "Media Advisory: The Heaviest Known Antimatter". bnl.gov. Archived from the original on 2017-02-11. Retrieved 2013-03-10.
  • ^ Brumfiel, Geoff (1 March 2001). "The Incredible Shrinking Nucleus". Physical Review Focus. Vol. 7, no. 11.
  • ^ Quadt, A. (2006). "Top quark physics at hadron colliders" (PDF). European Physical Journal C. 48 (3): 835–1000. Bibcode:2006EPJC...48..835Q. doi:10.1140/epjc/s2006-02631-6. S2CID 121887478.
  • ^ Amsler, C.; et al. (Particle Data Group) (2008). "Baryons" (PDF). Particle summary tables. Lawrence Berkeley Laboratory.
  • ^ Körner, J.G.; Krämer, M.; Pirjol, D. (1994). "Heavy Baryons". Progress in Particle and Nuclear Physics. 33: 787–868. arXiv:hep-ph/9406359. Bibcode:1994PrPNP..33..787K. doi:10.1016/0146-6410(94)90053-1. S2CID 118931787.
  • ^ Ho-Kim, Quang; Pham, Xuan Yem (1998). "Quarks and SU(3) Symmetry". Elementary Particles and their Interactions: Concepts and phenomena. Berlin: Springer-Verlag. p. 262. ISBN 978-3-540-63667-0. OCLC 38965994. Because the top quark decays before it can be hadronized, there are no bound states and no top-flavored mesons or baryons ... .
  • ^ Amsler, C.; et al. (Particle Data Group) (2008). "
    Λ
    c
    "
    (PDF). Particle listings. Lawrence Berkeley Laboratory.
  • ^ Amsler, C.; et al. (Particle Data Group) (2008). "
    Λ+
    c
    "
    (PDF). Decay modes. Lawrence Berkeley Laboratory.
  • ^ Amsler, C.; et al. (Particle Data Group) (2008). "
    Λ
    b
    "
    (PDF). Particle listings. Lawrence Berkeley Laboratory.
  • ^ Amsler, C.; et al. (Particle Data Group) (2008). "
    Λ0
    b
    "
    (PDF). Decay modes. Lawrence Berkeley Laboratory.
  • ^ Zyla, P.A.; et al. (Particle Data Group) (2020-08-14). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2020 (8): 083C01. Bibcode:2020PTEP.2020h3C01P. doi:10.1093/ptep/ptaa104. hdl:10481/66389.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lambda_baryon&oldid=1224339445"

    Categories: 
    Baryons
    Strange quark
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
     



    This page was last edited on 17 May 2024, at 19:52 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki