Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Name  





2 History  





3 Development  



3.1  Approximate Plancherel inequality  





3.2  Duality principle  







4 See also  





5 References  














Large sieve






Español
Nederlands

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Large sieve inequality)

The large sieve is a method (or family of methods and related ideas) in analytic number theory. It is a type of sieve where up to half of all residue classes of numbers are removed, as opposed to small sieves such as the Selberg sieve wherein only a few residue classes are removed. The method has been further heightened by the larger sieve which removes arbitrarily many residue classes.[1]

Name[edit]

Its name comes from its original application: given a set such that the elements of S are forbidden to lie in a set ApZ/p Z modulo every prime p, how large can S be? Here Ap is thought of as being large, i.e., at least as large as a constant times p; if this is not the case, we speak of a small sieve.

History[edit]

The early history of the large sieve traces back to work of Yu. B. Linnik, in 1941, working on the problem of the least quadratic non-residue. Subsequently Alfréd Rényi worked on it, using probability methods. It was only two decades later, after quite a number of contributions by others, that the large sieve was formulated in a way that was more definitive. This happened in the early 1960s, in independent work of Klaus Roth and Enrico Bombieri. It is also around that time that the connection with the duality principle became better understood. In the mid-1960s, the Bombieri–Vinogradov theorem was proved as a major application of large sieves using estimations of mean values of Dirichlet characters. In the late 1960s and early 1970s, many of the key ingredients and estimates were simplified by Patrick X. Gallagher.[2]

Development[edit]

Large-sieve methods have been developed enough that they are applicable to small-sieve situations as well. Something is commonly seen as related to the large sieve not necessarily in terms of whether it is related to the kind of situation outlined above, but, rather, if it involves one of the two methods of proof traditionally used to yield a large-sieve result:

Approximate Plancherel inequality[edit]

If a set S is ill-distributed modulo p (by virtue, for example, of being excluded from the congruence classes Ap) then the Fourier coefficients of the characteristic function fp of the set S mod p are in average large. These coefficients can be lifted to values of the Fourier transform of the characteristic function f of the set S (i.e.,

).

By bounding derivatives, we can see that must be large, on average, for all x near rational numbers of the form a/p. Large here means "a relatively large constant times |S|". Since

we get a contradiction with the Plancherel identity

unless |S| is small. (In practice, to optimise bounds, people nowadays modify the Plancherel identity into an equality rather than bound derivatives as above.)

Duality principle[edit]

One can prove a strong large-sieve result easily by noting the following basic fact from functional analysis: the norm of a linear operator (i.e.,

where A is an operator from a linear space V to a linear space W) equals the norm of its adjoint i.e.,

.

This principle itself has come to acquire the name "large sieve" in some of the mathematical literature.

It is also possible to derive the large sieve from majorants in the style of Selberg (see Selberg, Collected Works, vol II, Lectures on sieves).

See also[edit]

References[edit]

  1. ^ Gallagher, Patrick (1971). "A larger sieve". Acta Arithmetica. 18: 77–81.
  • ^ Tenenbaum, Gérald (2015). Introduction to Analytic and Probabilistic Number Theory. Graduate Studies in Mathematics. Vol. 163. American Mathematical Society. pp. 102–104. ISBN 9780821898543.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Large_sieve&oldid=1215216632"

    Category: 
    Sieve theory
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from February 2019
    All articles needing additional references
    Template SpringerEOM with broken ref
     



    This page was last edited on 23 March 2024, at 20:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki