Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Occurrence  





2 Formation  





3 Hazards  





4 Uses  





5 See also  





6 References  





7 External links  














Lava delta






العربية
Català
Français
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Lava bench)

Lava delta of Ponta dos Biscoitos, Sant Cruz das Ribeiras, Pico Island

Lava deltas, similar to river deltas, form wherever sufficient sub-aerial flows of lava enter standing bodies of water. The lava cools and breaks up as it encounters the water, with the resulting fragments filling in the adjacent seabed topography such that the flow can move further offshore sub-aerially. Lava deltas are generally associated with large-scale, effusive type basaltic volcanism.

Occurrence[edit]

Lava deltas are found mainly associated with volcanic islands, particularly those formed at hotspots as they produce the necessary effusive basaltic flows.

The largest lava delta systems known are associated with formation of volcanic type passive margins. Just prior to break-up along the northern Atlantic in the late Paleocene, massive eruptions occurred along the eventual line of break-up. This volcanism, part of the North Atlantic Igneous Province, led to the formation of two extensive lava escarpments, interpreted as deltas,[1] extending from the Faeroes onto the More Margin (the Faeroe-Shetland escarpment) and the Vøring escarpment on the Vøring margin, a combined distance of approximately 1,000 km (620 mi).[2][3] As these deltas were prograding into water of relatively constant depth, they were able to extend as much as 25 km (16 mi) from their original vents.[4]

Formation[edit]

Aerial view of Kamoamoa lava delta forming, Kilauea
USGS cartoon of lava delta formation

When a sub-aerial lava flow reaches the ocean (or other large body of water), contact with the water causes both rapid cooling of the lava and steam explosions that fragment it. The glassy fragments that are formed, known as hyaloclastites, fall down to the seabed forming foresets. As the seabed topography becomes infilled, the subaerial flow is able to build out. The process continues as long as the lava supply is maintained, creating a lava bench. A lava bench is a volcanic landform with a horizontal surface raised above the level of the surrounding area.[5] The Hawaiian islands are an example of land that was formed this way, and the Big Island is currently still expanding due to lava benches.[6] The Kilauea Volcano releases lava that flows down the slope of the volcano and eventually encounters the ocean; this lava flow hardens when it comes into contact with the significantly cooler water of the ocean and forms an unstable lava bench. Eventually, when the material beneath the lava bench stabilizes, it becomes stable land that has been added to the island.

Most lava deltas are formed by relatively low viscosity pāhoehoe type flows and the lava reaches the sea via a system of small lava tubes, their entry into the water being marked by a series of steam plumes.[7]

Hazards[edit]

Collapse of the frontal part of lava deltas is common during their formation, representing a hazard for any people that are watching from a solidified part of the delta and such areas are normally marked as dangerous.[8] If a newly formed lava bench rests on sediments, it may pose hazards due to its extremely unstable structure.[6] Oftentimes, these benches are so unstable that they collapse into the sea, exposing the water to the hot lava on the interior of the bench and releasing acres of land into the ocean.[6] When the hot lava hits the water, violent explosions of steam can shoot large rocks and molten lava up to 300 feet (90 m) inland.[5] These collapses are extremely dangerous because they can happen without warning, and anyone or anything on the bench will be caught in the collapse. For safety, people are advised not to walk on lava benches because of their unstable nature, and they must maintain a safe distance from the lava bench.[9]

People standing too close to the edge of an active delta are not only at risk from being thrown in the water but from the steam explosions and the accompanying acidic clouds (laze) that result from the collapse as seawater comes into contact with the active lava tube system.

Uses[edit]

The town of Garachico, Tenerife, built on a lava delta formed during the 1706 eruption

On steep-sided volcanic islands, lava deltas make attractive sites for building and many villages and towns are located on old lava deltas, such as GarachicoonTenerife.

See also[edit]

References[edit]

  1. ^ Kiørbøe, L. 1999. Stratigraphic relationships of the Lower Tertiary of the Faeroe Basalt Plateau and the Faeroe-Shetland Basin. In: Fleet, A.J. & Boldy, S.A.R. (eds) Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference, Geological Society, London.
  • ^ Berndt, C; Planke, S; Alvestad, E; Tsikalas, F; Rasmussen, T (2001), "Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectonomagmatic break-up process", Journal of the Geological Society, 158 (3): 413–426, Bibcode:2001JGSoc.158..413B, doi:10.1144/jgs.158.3.413, S2CID 130452213
  • ^ Planke, S., and Alvestad, E., 1999. Seismic volcanostratigraphy of the extrusive breakup complexes in the northeast Atlantic: implications from ODP/DSDP drilling. In Larsen, H.C., Duncan, R.A., Allan, J.F., Brooks, K. (Eds.), Proc. ODP, Sci. Results, 163, 3–16 [Online.]
  • ^ White, R.S., Spitzer, R., Christie, P.A.F. & iSIMM team. 2004. Seismic imaging through basalt flows on the Faroe Shelf. Presentation at Petex.
  • ^ a b Observatory, HVO, Hawaiian Volcano. "Lava bench is no boardwalk". hvo.wr.usgs.gov. Retrieved 2016-10-26.{{cite web}}: CS1 maint: multiple names: authors list (link)
  • ^ a b c "Volcanology photoglossary: explanation of volcanologic terms". www.volcanodiscovery.com. Retrieved 2016-10-26.
  • ^ Mattox, Tari N; Mangan, Margaret T (1997), "Littoral hydrovolcanic explosions: A case study of lava–seawater interaction at Kilauea Volcano", Journal of Volcanology and Geothermal Research, 75 (1–2): 1–17, Bibcode:1997JVGR...75....1M, doi:10.1016/S0377-0273(96)00048-0
  • ^ When Lava Enters the Sea: Growth & Collapse of Lava Deltas, Hawaiian Volcanic Observatory, USGS
  • ^ Advertiser, Final. Big Island gets smaller as lava bench breaks off Honolulu Advertiser, The (HI) 04 Aug. 2006: NewsBank. Web. 26 Oct. 2016.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lava_delta&oldid=1184168856#Formation"

    Categories: 
    Volcanology
    Lava flows
    Hidden categories: 
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 8 November 2023, at 19:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki