Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 History  





3 See also  





4 References  





5 External links and further reading  














Lorenz gauge condition






Čeština
Deutsch
Esperanto
فارسی
Français

Italiano
Nederlands
Português
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Lorenz gauge)

Inelectromagnetism, the Lorenz gauge conditionorLorenz gauge (after Ludvig Lorenz) is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field.[1] The condition is Lorentz invariant. The Lorenz gauge condition does not completely determine the gauge: one can still make a gauge transformation where is the four-gradient and is any harmonic scalar function: that is, a scalar function obeying the equation of a massless scalar field.

The Lorenz gauge condition is used to eliminate the redundant spin-0 component in Maxwell's equations when these are used to describe a massless spin-1 quantum field. It is also used for massive spin-1 fields where the concept of gauge transformations does not apply at all.

Description[edit]

Inelectromagnetism, the Lorenz condition is generally usedincalculationsoftime-dependent electromagnetic fields through retarded potentials.[2] The condition is

where is the four-potential, the comma denotes a partial differentiation and the repeated index indicates that the Einstein summation convention is being used. The condition has the advantage of being Lorentz invariant. It still leaves substantial gauge degrees of freedom.

In ordinary vector notation and SI units, the condition is

where is the magnetic vector potential and is the electric potential;[3][4] see also gauge fixing.

InGaussian units the condition is[5][6]

A quick justification of the Lorenz gauge can be found using Maxwell's equations and the relation between the magnetic vector potential and the magnetic field:

Therefore,

Since the curl is zero, that means there is a scalar function such that

This gives a well known equation for the electric field:

This result can be plugged into the Ampère–Maxwell equation,

This leaves

To have Lorentz invariance, the time derivatives and spatial derivatives must be treated equally (i.e. of the same order). Therefore, it is convenient to choose the Lorenz gauge condition, which makes the left hand side zero and gives the result

A similar procedure with a focus on the electric scalar potential and making the same gauge choice will yield

These are simpler and more symmetric forms of the inhomogeneous Maxwell's equations.

Here

is the vacuum velocity of light, and is the d'Alembertian operator with the (+ − − −) metric signature. These equations are not only valid under vacuum conditions, but also in polarized media,[7]if and are source density and circulation density, respectively, of the electromagnetic induction fields and calculated as usual from and by the equations

The explicit solutions for and – unique, if all quantities vanish sufficiently fast at infinity – are known as retarded potentials.

History[edit]

When originally published in 1867, Lorenz's work was not received well by James Clerk Maxwell. Maxwell had eliminated the Coulomb electrostatic force from his derivation of the electromagnetic wave equation since he was working in what would nowadays be termed the Coulomb gauge. The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents". Lorenz's work was the first use of symmetry to simplify Maxwell's equations after Maxwell himself published his 1865 paper. In 1888, retarded potentials came into general use after Heinrich Rudolf Hertz's experiments on electromagnetic waves. In 1895, a further boost to the theory of retarded potentials came after J. J. Thomson's interpretation of data for electrons (after which investigation into electrical phenomena changed from time-dependent electric charge and electric current distributions over to moving point charges).[2]

See also[edit]

References[edit]

  1. ^ Jackson, J.D.; Okun, L.B. (2001), "Historical roots of gauge invariance", Reviews of Modern Physics, 73 (3): 663–680, arXiv:hep-ph/0012061, Bibcode:2001RvMP...73..663J, doi:10.1103/RevModPhys.73.663, S2CID 8285663
  • ^ a b McDonald, Kirk T. (1997), "The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips" (PDF), American Journal of Physics, 65 (11): 1074–1076, Bibcode:1997AmJPh..65.1074M, CiteSeerX 10.1.1.299.9838, doi:10.1119/1.18723, S2CID 13703110, archived from the original (PDF) on 2022-05-19
  • ^ Jackson, John David (1999). Classical Electrodynamics (3rd ed.). John Wiley & Sons. p. 240. ISBN 978-0-471-30932-1.
  • ^ Keller, Ole (2012-02-02). Quantum Theory of Near-Field Electrodynamics. Springer Science & Business Media. p. 19. Bibcode:2011qtnf.book.....K. ISBN 9783642174100.
  • ^ Gbur, Gregory J. (2011). Mathematical Methods for Optical Physics and Engineering. Cambridge University Press. p. 59. Bibcode:2011mmop.book.....G. ISBN 978-0-521-51610-5.
  • ^ Heitler, Walter (1954). The Quantum Theory of Radiation. Courier Corporation. p. 3. ISBN 9780486645582.
  • ^ For example, see Cheremisin, M. V.; Okun, L. B. (2003). "Riemann-Silberstein representation of the complete Maxwell equations set". arXiv:hep-th/0310036.
  • External links and further reading[edit]

    General
    Further reading
    History

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lorenz_gauge_condition&oldid=1224155582"

    Categories: 
    Electromagnetism
    Concepts in physics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 16 May 2024, at 15:44 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki