Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Background  





2 Proofs  



2.1  Later proofs  







3 Consequences  





4 Generalizations  





5 Notes  





6 Citations  





7 References  














Faltings's theorem






العربية
Deutsch
Español
فارسی
Français

עברית
Magyar
Nederlands

Русский
Svenska
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Mordell conjecture)

Faltings's theorem
Gerd Faltings
FieldArithmetic geometry
Conjectured byLouis Mordell
Conjectured in1922
First proof byGerd Faltings
First proof in1983
GeneralizationsBombieri–Lang conjecture
Mordell–Lang conjecture
ConsequencesSiegel's theorem on integral points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field ofrational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell,[1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings.[2] The conjecture was later generalized by replacing by any number field.

Background[edit]

Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows:

Proofs[edit]

Igor Shafarevich conjectured that there are only finitely many isomorphism classes of abelian varieties of fixed dimension and fixed polarization degree over a fixed number field with good reduction outside a fixed finite set of places.[3] Aleksei Parshin showed that Shafarevich's finiteness conjecture would imply the Mordell conjecture, using what is now called Parshin's trick.[4]

Gerd Faltings proved Shafarevich's finiteness conjecture using a known reduction to a case of the Tate conjecture, together with tools from algebraic geometry, including the theory of Néron models.[5] The main idea of Faltings's proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.[a]

Later proofs[edit]

Consequences[edit]

Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured:

A sample application of Faltings's theorem is to a weak form of Fermat's Last Theorem: for any fixed there are at most finitely many primitive integer solutions (pairwise coprime solutions) to , since for such the Fermat curve has genus greater than 1.

Generalizations[edit]

Because of the Mordell–Weil theorem, Faltings's theorem can be reformulated as a statement about the intersection of a curve with a finitely generated subgroup of an abelian variety . Generalizing by replacing by a semiabelian variety, by an arbitrary subvariety of , and by an arbitrary finite-rank subgroup of leads to the Mordell–Lang conjecture, which was proved in 1995 by McQuillan[9] following work of Laurent, Raynaud, Hindry, Vojta, and Faltings.

Another higher-dimensional generalization of Faltings's theorem is the Bombieri–Lang conjecture that if is a pseudo-canonical variety (i.e., a variety of general type) over a number field , then is not Zariski densein. Even more general conjectures have been put forth by Paul Vojta.

The Mordell conjecture for function fields was proved by Yuri Ivanovich Manin[10] and by Hans Grauert.[11] In 1990, Robert F. Coleman found and fixed a gap in Manin's proof.[12]

Notes[edit]

  1. ^ "Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof." Bloch, Spencer (1984). "The Proof of the Mordell Conjecture". The Mathematical Intelligencer. 6 (2): 44. doi:10.1007/BF03024155. S2CID 306251.

Citations[edit]

  • ^ Shafarevich 1963.
  • ^ Parshin 1968.
  • ^ Faltings 1983.
  • ^ Vojta 1991.
  • ^ Bombieri 1990.
  • ^ Lawrence & Venkatesh 2020.
  • ^ McQuillan 1995.
  • ^ Manin 1963.
  • ^ Grauert 1965.
  • ^ Coleman 1990.
  • References[edit]

  • Coleman, Robert F. (1990). "Manin's proof of the Mordell conjecture over function fields". L'Enseignement Mathématique. 2e Série. 36 (3): 393–427. ISSN 0013-8584. MR 1096426.
  • Cornell, Gary; Silverman, Joseph H., eds. (1986). Arithmetic geometry. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984. New York: Springer-Verlag. doi:10.1007/978-1-4613-8655-1. ISBN 0-387-96311-1. MR 0861969. → Contains an English translation of Faltings (1983)
  • Faltings, Gerd (1983).『Endlichkeitssätze für abelsche Varietäten über Zahlkörpern』[Finiteness theorems for abelian varieties over number fields]. Inventiones Mathematicae (in German). 73 (3): 349–366. Bibcode:1983InMat..73..349F. doi:10.1007/BF01388432. MR 0718935.
  • Faltings, Gerd (1984). "Erratum: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". Inventiones Mathematicae (in German). 75 (2): 381. doi:10.1007/BF01388572. MR 0732554.
  • Faltings, Gerd (1991). "Diophantine approximation on abelian varieties". Ann. of Math. 133 (3): 549–576. doi:10.2307/2944319. JSTOR 2944319. MR 1109353.
  • Faltings, Gerd (1994). "The general case of S. Lang's conjecture". In Cristante, Valentino; Messing, William (eds.). Barsotti Symposium in Algebraic Geometry. Papers from the symposium held in Abano Terme, June 24–27, 1991. Perspectives in Mathematics. San Diego, CA: Academic Press, Inc. ISBN 0-12-197270-4. MR 1307396.
  • Grauert, Hans (1965). "Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper". Publications Mathématiques de l'IHÉS. 25 (25): 131–149. doi:10.1007/BF02684399. ISSN 1618-1913. MR 0222087.
  • Hindry, Marc; Silverman, Joseph H. (2000). Diophantine geometry. Graduate Texts in Mathematics. Vol. 201. New York: Springer-Verlag. doi:10.1007/978-1-4612-1210-2. ISBN 0-387-98981-1. MR 1745599. → Gives Vojta's proof of Faltings's Theorem.
  • Lang, Serge (1997). Survey of Diophantine geometry. Springer-Verlag. pp. 101–122. ISBN 3-540-61223-8.
  • Lawrence, Brian; Venkatesh, Akshay (2020). "Diophantine problems and p-adic period mappings". Invent. Math. 221 (3): 893–999. arXiv:1807.02721. doi:10.1007/s00222-020-00966-7.
  • Manin, Ju. I. (1963). "Rational points on algebraic curves over function fields". Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya (in Russian). 27: 1395–1440. ISSN 0373-2436. MR 0157971. (Translation: Manin, Yu. (1966). "Rational points on algebraic curves over function fields". American Mathematical Society Translations. Series 2. 59: 189–234. doi:10.1090/trans2/050/11. ISBN 9780821817506. ISSN 0065-9290. )
  • McQuillan, Michael (1995). "Division points on semi-abelian varieties". Invent. Math. 120 (1): 143–159. doi:10.1007/BF01241125.
  • Mordell, Louis J. (1922). "On the rational solutions of the indeterminate equation of the third and fourth degrees". Proc. Cambridge Philos. Soc. 21: 179–192.
  • Paršin, A. N. (1970). "Quelques conjectures de finitude en géométrie diophantienne" (PDF). Actes du Congrès International des Mathématiciens. Vol. Tome 1. Nice: Gauthier-Villars (published 1971). pp. 467–471. MR 0427323. Archived from the original (PDF) on 2016-09-24. Retrieved 2016-06-11.
  • Parshin, A. N. (2001) [1994]. "Mordell conjecture". Encyclopedia of Mathematics. EMS Press.
  • Parshin, A. N. (1968). "Algebraic curves over function fields I". Izv. Akad. Nauk. SSSR Ser. Math. 32 (5): 1191–1219. Bibcode:1968IzMat...2.1145P. doi:10.1070/IM1968v002n05ABEH000723.
  • Shafarevich, I. R. (1963). "Algebraic number fields". Proceedings of the International Congress of Mathematicians: 163–176.
  • Vojta, Paul (1991). "Siegel's theorem in the compact case". Ann. of Math. 133 (3): 509–548. doi:10.2307/2944318. JSTOR 2944318. MR 1109352.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Faltings%27s_theorem&oldid=1218258934"

    Categories: 
    Diophantine geometry
    Theorems in number theory
    Theorems in algebraic geometry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    CS1 German-language sources (de)
    CS1 Russian-language sources (ru)
    CS1: long volume value
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 10 April 2024, at 17:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki