Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Introduction  





2 Mueller vs. Jones calculi  





3 Mueller matrices  





4 Mueller tensors  





5 See also  





6 References  



6.1  Other sources  
















Mueller calculus






العربية
Беларуская
Deutsch
Español
Français


Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Mueller matrix)

Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix.

Introduction[edit]

Disregarding coherent wave superposition, any fully polarized, partially polarized, or unpolarized state of light can be represented by a Stokes vector (); and any optical element can be represented by a Mueller matrix (M).

If a beam of light is initially in the state and then passes through an optical element M and comes out in a state , then it is written

If a beam of light passes through optical element M1 followed by M2 then M3 it is written

given that matrix multiplicationisassociative it can be written

Matrix multiplication is not commutative, so in general

Mueller vs. Jones calculi[edit]

With disregard for coherence, light which is unpolarized or partially polarized must be treated using the Mueller calculus, while fully polarized light can be treated with either the Mueller calculus or the simpler Jones calculus. Many problems involving coherent light (such as from a laser) must be treated with Jones calculus, however, because it works directly with the electric field of the light rather than with its intensity or power, and thereby retains information about the phase of the waves. More specifically, the following can be said about Mueller matrices and Jones matrices:[1]

Stokes vectors and Mueller matrices operate on intensities and their differences, i.e. incoherent superpositions of light; they are not adequate to describe either interference or diffraction effects.

(...)

Any Jones matrix [J] can be transformed into the corresponding Mueller–Jones matrix, M, using the following relation:[2]

,

where * indicates the complex conjugate [sic], [A is:]

and ⊗ is the tensor (Kronecker) product.

(...)

While the Jones matrix has eight independent parameters [two Cartesian or polar components for each of the four complex values in the 2-by-2 matrix], the absolute phase information is lost in the [equation above], leading to only seven independent matrix elements for a Mueller matrix derived from a Jones matrix.

Mueller matrices[edit]

Below are listed the Mueller matrices for some ideal common optical elements:

General expression for reference frame rotation[3] from the local frame to the laboratory frame:

where is the angle of rotation. For rotation from the laboratory frame to the local frame, the sign of the sine terms inverts.

Linear polarizer (horizontal transmission)

The Mueller matrices for other polarizer rotation angles can be generated by reference frame rotation.

Linear polarizer (vertical transmission)
Linear polarizer (+45° transmission)
Linear polarizer (−45° transmission)
General linear polarizer matrix

where is the angle of rotation of the polarizer.

General linear retarder (wave plate calculations are made from this)
where is the phase difference between the fast and slow axis and is the angle of the fast axis.
Quarter-wave plate (fast-axis vertical)
Quarter-wave plate (fast-axis horizontal)
Half-wave plate (fast-axis horizontal and vertical; also, ideal mirror)
Attenuating filter (25% transmission)

Mueller tensors[edit]

The Mueller/Stokes architecture can also be used to describe non-linear optical processes, such as multi-photon excited fluorescence and second harmonic generation. The Mueller tensor can be connected back to the laboratory-frame Jones tensor by direct analogy with Mueller and Jones matrices.

,

where is the rank three Mueller tensor describing the Stokes vector produced by a pair of incident Stokes vectors, and is the 2×2×2 laboratory-frame Jones tensor.

See also[edit]

References[edit]

  1. ^ Savenkov, S. N. (2009). "Jones and Mueller matrices: Structure, symmetry relations and information content". Light Scattering Reviews 4. pp. 71–119. doi:10.1007/978-3-540-74276-0_3. ISBN 978-3-540-74275-3.
  • ^ * Nathan G. Parke (1949). "Optical Algebra". Journal of Mathematics and Physics. 28 (1–4): 131. doi:10.1002/sapm1949281131.
  • ^ Chipman, Russell (6 October 2009). "Chapter 14: Polarimetry". In Bass, Michael (ed.). Handbook of Optics. Vol. 1: Geometrical and Physical Optics, Polarized Light, Components and Instruments. McGraw Hill Education. ISBN 978-0071498890.
  • Other sources[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Mueller_calculus&oldid=1163487117#Mueller_matrices"

    Categories: 
    Polarization (waves)
    Matrices
    Hidden categories: 
    CS1: long volume value
    Articles with short description
    Short description matches Wikidata
    Articles lacking in-text citations from July 2014
    All articles lacking in-text citations
     



    This page was last edited on 5 July 2023, at 05:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki