Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Physiological and Clinical Implications  





2 See also  





3 References  





4 External links  














Nitrogen balance






Български
Deutsch
Español
Հայերեն
Қазақша
Русский
Українська
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 

(Redirected from Nitrogen equilibrium)

Inhuman physiology, nitrogen balance is the net difference between bodily nitrogen intake (ingestion) and loss (excretion):

Nitrogen is a fundamental chemical component of amino acids, the molecular building blocks of protein and as such Nitrogen balance may be used as an index of protein metabolism.[1] When more nitrogen is gained than lost by an individual, they are considered "in positive nitrogen balance" and a state of overall protein anabolism. In contrast, a "negative nitrogen balance", in which more nitrogen is lost than gained, indicates a state of overall protein catabolism.[2]

The body obtains nitrogen from dietary protein, sources of which include meat, fish, eggs, dairy products, nuts, legumes, cereals, and grains. Nitrogen loss occurs largely through urine in the form of urea, as well as through feces, sweat, and hair and skin growth.

Blood urea nitrogen and urine urea nitrogen tests can be used to estimate nitrogen balance.

Physiological and Clinical Implications[edit]

Positive nitrogen balance is associated with periods of growth, hypothyroidism, tissue repair, and pregnancy. Because of this, the intake of nitrogen into the body is greater than the loss of nitrogen from the body. Thus, there is an increase in the total body pool of protein.

Negative nitrogen balance is associated with burns, serious tissue injuries, fever, hyperthyroidism, wasting diseases, and periods of fasting. This means that the amount of nitrogen excreted from the body is greater than the amount of nitrogen ingested.[3] A negative nitrogen balance can be used as part of a clinical evaluation of malnutrition.[4]

Nitrogen balance is a method traditionally used to measure dietary protein requirements.[5] This approach necessitates the meticulous collection of all nitrogen inputs and outputs to ensure comprehensive accounting of nitrogen exchanges.[6] Nitrogen balance studies typically involve controlled dietary conditions, requiring participants to consume specific diets to determine total nitrogen intake precisely. Furthermore, participants often must remain at the study location for the duration of the study to facilitate the collection of all nitrogen losses. Physical exercise is also known to influence nitrogen excretion, adding another variable that requires control during these studies.[7] Due to the stringent conditions required for accurate results, the nitrogen balance method may pose challenges when studying dietary protein requirements across different demographics, such as children.[8]

Dietary nitrogen, acquired from metabolizing proteins and other nitrogen-containing compounds, has been linked to changes in genomic evolution. Species that primarily obtain energy from metabolizing nitrogen-rich compounds use more nitrogen in their DNA than species that primarily break down carbohydrates for their energy[citation needed]. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.[9]

See also[edit]

References[edit]

  1. ^ World Health Organization Protein and amino acid requirements in human nutrition. WHO Technical Report Series 935 [1]
  • ^ Dickerson, Roland (April 2016). "Nitrogen Balance and Protein Requirements for Critically Ill Older Patients". Nutrients. 8 (4): 226. doi:10.3390/nu8040226. PMC 4848694. PMID 27096868.
  • ^ "VII. Monitoring Nutrition Therapy". Archived from the original on 2011-09-28.
  • ^ Barbosa-Silva MC (May 2008). "Subjective and objective nutritional assessment methods: what do they really assess?". Curr Opin Clin Nutr Metab Care. 11 (3): 248–54. doi:10.1097/MCO.0b013e3282fba5d7. PMID 18403920. S2CID 26831957.
  • ^ Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients). The National Academies Press: 2005
  • ^ Rand WM, Pellett PL, Young VR (2003). Meta-analysis of nitrogen balance studies for estimating protein requirements in health adults. Am.J.Nutr 77(1):109-127.
  • ^ Clauss, Matthieu; Burkhardt, Meike; Wöber, Sophie; Skålhegg, Bjørn Steen; Jensen, Jørgen (21 February 2024). "Effect of five hours of mixed exercise on urinary nitrogen excretion in healthy moderate-to-well-trained young adults". Frontiers in Nutrition. 11. doi:10.3389/fnut.2024.1345922. PMC 10914964. PMID 38450230.
  • ^ Elango R, Humayun MA, Ball RO, Pencharz PB (2011). "Protein requirements of healthy, school-aged children determined by the indicator amino acid oxidation method". Am. J. Clin. Nutr. 94 (6): 1545–1552. doi:10.3945/ajcn.111.012815. PMID 22049165.
  • ^ Seward EA and Kelly S (Nov 2016). "Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms". Genome Biology. 17 (226): 226. doi:10.1186/s13059-016-1087-9. PMC 5109750. PMID 27842572.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Nitrogen_balance&oldid=1226206492"

    Categories: 
    Nitrogen
    Proteins
    Hidden categories: 
    Wikipedia articles with style issues from June 2021
    All articles with style issues
    All articles with unsourced statements
    Articles with unsourced statements from October 2019
     



    This page was last edited on 29 May 2024, at 05:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki