Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal definition  





2 Relation among other classes  





3 Closure properties  





4 Other characterizations  





5 PSPACE-completeness  





6 Notes  





7 References  














PSPACE






العربية
Català
Čeština
Deutsch
Español
Français

Italiano
עברית
Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Português
Русский
Српски / srpski
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from PSPACE-hard)

Inclusions of complexity classes including P, NP, co-NP, BPP, P/poly, PH, and PSPACE

Unsolved problem in computer science:

Incomputational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.

Formal definition

[edit]

If we denote by SPACE(f(n)), the set of all problems that can be solved by Turing machines using O(f(n)) space for some function f of the input size n, then we can define PSPACE formally as[1]

It turns out that allowing the Turing machine to be nondeterministic does not add any extra power. Because of Savitch's theorem,[2] NPSPACE is equivalent to PSPACE, essentially because a deterministic Turing machine can simulate a nondeterministic Turing machine without needing much more space (even though it may use much more time).[3] Also, the complements of all problems in PSPACE are also in PSPACE, meaning that co-PSPACE = PSPACE.

Relation among other classes

[edit]
A representation of the relation among complexity classes

The following relations are known between PSPACE and the complexity classes NL, P, NP, PH, EXPTIME and EXPSPACE (note that ⊊, meaning strict containment, is not the same as ⊈):

From the third line, it follows that both in the first and in the second line, at least one of the set containments must be strict, but it is not known which. It is widely suspected that all are strict.

The containments in the third line are both known to be strict. The first follows from direct diagonalization (the space hierarchy theorem, NL ⊊ NPSPACE) and the fact that PSPACE = NPSPACE via Savitch's theorem. The second follows simply from the space hierarchy theorem.

The hardest problems in PSPACE are the PSPACE-complete problems. See PSPACE-complete for examples of problems that are suspected to be in PSPACE but not in NP.

Closure properties

[edit]

The class PSPACE is closed under operations union, complementation, and Kleene star.

Other characterizations

[edit]

An alternative characterization of PSPACE is the set of problems decidable by an alternating Turing machine in polynomial time, sometimes called APTIME or just AP.[4]

A logical characterization of PSPACE from descriptive complexity theory is that it is the set of problems expressible in second-order logic with the addition of a transitive closure operator. A full transitive closure is not needed; a commutative transitive closure and even weaker forms suffice. It is the addition of this operator that (possibly) distinguishes PSPACE from PH.

A major result of complexity theory is that PSPACE can be characterized as all the languages recognizable by a particular interactive proof system, the one defining the class IP. In this system, there is an all-powerful prover trying to convince a randomized polynomial-time verifier that a string is in the language. It should be able to convince the verifier with high probability if the string is in the language, but should not be able to convince it except with low probability if the string is not in the language.

PSPACE can be characterized as the quantum complexity class QIP.[5]

PSPACE is also equal to PCTC, problems solvable by classical computers using closed timelike curves,[6] as well as to BQPCTC, problems solvable by quantum computers using closed timelike curves.[7]

PSPACE-completeness

[edit]

A language BisPSPACE-complete if it is in PSPACE and it is PSPACE-hard, which means for all A ∈ PSPACE, , where means that there is a polynomial-time many-one reduction from AtoB. PSPACE-complete problems are of great importance to studying PSPACE problems because they represent the most difficult problems in PSPACE. Finding a simple solution to a PSPACE-complete problem would mean we have a simple solution to all other problems in PSPACE because all PSPACE problems could be reduced to a PSPACE-complete problem.[8]

An example of a PSPACE-complete problem is the quantified Boolean formula problem (usually abbreviated to QBForTQBF; the T stands for "true").[8]

Notes

[edit]
  1. ^ Arora & Barak (2009) p.81
  • ^ Arora & Barak (2009) p.85
  • ^ Arora & Barak (2009) p.86
  • ^ Arora & Barak (2009) p.100
  • ^ Rahul Jain; Zhengfeng Ji; Sarvagya Upadhyay; John Watrous (July 2009). "QIP = PSPACE". arXiv:0907.4737 [quant-ph].
  • ^ S. Aaronson (March 2005). "NP-complete problems and physical reality". SIGACT News. arXiv:quant-ph/0502072. Bibcode:2005quant.ph..2072A. doi:10.1145/1052796.1052804. S2CID 18759797..
  • ^ Watrous, John; Aaronson, Scott (2009). "Closed timelike curves make quantum and classical computing equivalent". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 465 (2102): 631. arXiv:0808.2669. Bibcode:2009RSPSA.465..631A. doi:10.1098/rspa.2008.0350. S2CID 745646.
  • ^ a b Arora & Barak (2009) p.83
  • References

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=PSPACE&oldid=1224169808#PSPACE-completeness"

    Category: 
    Complexity classes
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 16 May 2024, at 17:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki