Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The technique  





2 Examples  





3 Mathematical details and consequences  



3.1  The polarization isomorphism (by degree)  





3.2  The algebraic isomorphism  





3.3  Remarks  







4 See also  





5 References  














Polarization of an algebraic form







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Polarization formula)

Inmathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.

Although the technique is deceptively simple, it has applications in many areas of abstract mathematics: in particular to algebraic geometry, invariant theory, and representation theory. Polarization and related techniques form the foundations for Weyl's invariant theory.

The technique[edit]

The fundamental ideas are as follows. Let be a polynomial in variables Suppose that is homogeneous of degree which means that

Let be a collection of indeterminates with so that there are variables altogether. The polar formof is a polynomial which is linear separately in each (that is, is multilinear), symmetric in the and such that

The polar form of is given by the following construction In other words, is a constant multiple of the coefficient of in the expansion of

Examples[edit]

A quadratic example. Suppose that and is the quadratic form Then the polarization of is a function in and given by More generally, if is any quadratic form then the polarization of agrees with the conclusion of the polarization identity.

A cubic example. Let Then the polarization of is given by

Mathematical details and consequences[edit]

The polarization of a homogeneous polynomial of degree is valid over any commutative ring in which is a unit. In particular, it holds over any fieldofcharacteristic zero or whose characteristic is strictly greater than

The polarization isomorphism (by degree)[edit]

For simplicity, let be a field of characteristic zero and let be the polynomial ringin variables over Then isgradedbydegree, so that The polarization of algebraic forms then induces an isomorphism of vector spaces in each degree where is the -th symmetric power of the -dimensional space

These isomorphisms can be expressed independently of a basis as follows. If is a finite-dimensional vector space and is the ring of -valued polynomial functions on graded by homogeneous degree, then polarization yields an isomorphism

The algebraic isomorphism[edit]

Furthermore, the polarization is compatible with the algebraic structure on , so that where is the full symmetric algebra over

Remarks[edit]

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Polarization_of_an_algebraic_form&oldid=1185814952"

Categories: 
Abstract algebra
Homogeneous polynomials
Hidden categories: 
Articles with short description
Short description with empty Wikidata description
 



This page was last edited on 19 November 2023, at 04:43 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki