Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Examples  





3 Fitting to a curve  





4 Fitting to data  





5 Notation  





6 Applications  





7 See also  





8 Further reading  





9 References  














Piecewise linear function






Català
Чӑвашла
Dansk
فارسی
Français
ि
עברית
Nederlands

Polski
Português
Русский
ி
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Polyhedral convex function)

Inmathematics, a piecewise linearorsegmented function is a real-valued function of a real variable, whose graph is composed of straight-line segments.[1]

Definition[edit]

A piecewise linear function is a function defined on a (possibly unbounded) intervalofreal numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".) If the domain of the function is compact, there needs to be a finite collection of such intervals; if the domain is not compact, it may either be required to be finite or to be locally finite in the reals.

Examples[edit]

A continuous piecewise linear function

The function defined by

is piecewise linear with four pieces. The graph of this function is shown to the right. Since the graph of an affine(*) function is a line, the graph of a piecewise linear function consists of line segments and rays. The x values (in the above example −3, 0, and 3) where the slope changes are typically called breakpoints, changepoints, threshold values or knots. As in many applications, this function is also continuous. The graph of a continuous piecewise linear function on a compact interval is a polygonal chain.

Other examples of piecewise linear functions include the absolute value function, the sawtooth function, and the floor function.

(*) A linear function satisfies by definition and therefore in particular ; functions whose graph is a straight line are affine rather than linear.

Fitting to a curve[edit]

A function (blue) and a piecewise linear approximation to it (red)

An approximation to a known curve can be found by sampling the curve and interpolating linearly between the points. An algorithm for computing the most significant points subject to a given error tolerance has been published.[2]

Fitting to data[edit]

If partitions, and then breakpoints, are already known, linear regression can be performed independently on these partitions. However, continuity is not preserved in that case, and also there is no unique reference model underlying the observed data. A stable algorithm with this case has been derived.[3]

If partitions are not known, the residual sum of squares can be used to choose optimal separation points.[4] However efficient computation and joint estimation of all model parameters (including the breakpoints) may be obtained by an iterative procedure[5] currently implemented in the package segmented[6] for the R language.

A variant of decision tree learning called model trees learns piecewise linear functions.[7]

Notation[edit]

A piecewise linear function of two arguments (top) and the convex polytopes on which it is linear (bottom)

The notion of a piecewise linear function makes sense in several different contexts. Piecewise linear functions may be defined on n-dimensional Euclidean space, or more generally any vector spaceoraffine space, as well as on piecewise linear manifolds and simplicial complexes (see simplicial map). In each case, the function may be real-valued, or it may take values from a vector space, an affine space, a piecewise linear manifold, or a simplicial complex. (In these contexts, the term “linear” does not refer solely to linear transformations, but to more general affine linear functions.)

In dimensions higher than one, it is common to require the domain of each piece to be a polygonorpolytope. This guarantees that the graph of the function will be composed of polygonal or polytopal pieces.

Important sub-classes of piecewise linear functions include the continuous piecewise linear functions and the convex piecewise linear functions. In general, for every n-dimensional continuous piecewise linear function , there is a

such that

[8]

If is convex and continuous, then there is a

such that

Splines generalize piecewise linear functions to higher-order polynomials, which are in turn contained in the category of piecewise-differentiable functions, PDIFF.

Applications[edit]

Crop response to depth of the watertable[9]
Example of crop response to soil salinity[10]

Inagriculture piecewise regression analysis of measured data is used to detect the range over which growth factors affect the yield and the range over which the crop is not sensitive to changes in these factors.

The image on the left shows that at shallow watertables the yield declines, whereas at deeper (> 7 dm) watertables the yield is unaffected. The graph is made using the method of least squares to find the two segments with the best fit.

The graph on the right reveals that crop yields tolerateasoil salinity up to ECe = 8 dS/m (ECe is the electric conductivity of an extract of a saturated soil sample), while beyond that value the crop production reduces. The graph is made with the method of partial regression to find the longest range of "no effect", i.e. where the line is horizontal. The two segments need not join at the same point. Only for the second segment method of least squares is used.

See also[edit]

Further reading[edit]

References[edit]

  1. ^ Stanley, William D. (2004). Technical Analysis And Applications With Matlab. Cengage Learning. p. 143. ISBN 978-1401864811.
  • ^ Hamann, B.; Chen, J. L. (1994). "Data point selection for piecewise linear curve approximation" (PDF). Computer Aided Geometric Design. 11 (3): 289. doi:10.1016/0167-8396(94)90004-3.
  • ^ Golovchenko, Nikolai. "Least-squares Fit of a Continuous Piecewise Linear Function". Retrieved 6 Dec 2012.
  • ^ Vieth, E. (1989). "Fitting piecewise linear regression functions to biological responses". Journal of Applied Physiology. 67 (1): 390–396. doi:10.1152/jappl.1989.67.1.390. PMID 2759968.
  • ^ Muggeo, V. M. R. (2003). "Estimating regression models with unknown break‐points". Statistics in Medicine. 22 (19): 3055–3071. doi:10.1002/sim.1545. PMID 12973787. S2CID 36264047.
  • ^ Muggeo, V. M. R. (2008). "Segmented: an R package to fit regression models with broken-line relationships" (PDF). R News. 8: 20–25.
  • ^ Landwehr, N.; Hall, M.; Frank, E. (2005). "Logistic Model Trees" (PDF). Machine Learning. 59 (1–2): 161–205. doi:10.1007/s10994-005-0466-3. S2CID 6306536.
  • ^ Ovchinnikov, Sergei (2002). "Max-min representation of piecewise linear functions". Beiträge zur Algebra und Geometrie. 43 (1): 297–302. arXiv:math/0009026. MR 1913786.
  • ^ A calculator for piecewise regression.
  • ^ A calculator for partial regression.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Piecewise_linear_function&oldid=1216450572"

    Categories: 
    Real analysis
    Types of functions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from March 2013
    All articles needing additional references
     



    This page was last edited on 31 March 2024, at 02:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki