Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Primitive cell  



1.1  WignerSeitz cell  







2 Conventional cell  





3 Two dimensions  





4 Three dimensions  





5 See also  





6 Notes  





7 References  














Unit cell






العربية
Čeština
Deutsch
Español
فارسی
Français

Bahasa Indonesia
Magyar
Nederlands

Polski
Русский
Slovenčina
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Primitive cell)

Ingeometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice.[1] Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessarily have unit size, or even a particular size at all. Rather, the primitive cell is the closest analogy to a unit vector, since it has a determined size for a given lattice and is the basic building block from which larger cells are constructed.

The concept is used particularly in describing crystal structure in two and three dimensions, though it makes sense in all dimensions. A lattice can be characterized by the geometry of its unit cell, which is a section of the tiling (aparallelogramorparallelepiped) that generates the whole tiling using only translations.

There are two special cases of the unit cell: the primitive cell and the conventional cell. The primitive cell is a unit cell corresponding to a single lattice point, it is the smallest possible unit cell.[2] In some cases, the full symmetry of a crystal structure is not obvious from the primitive cell, in which cases a conventional cell may be used. A conventional cell (which may or may not be primitive) is a unit cell with the full symmetry of the lattice and may include more than one lattice point. The conventional unit cells are parallelotopesinn dimensions.

Primitive cell[edit]

A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1/n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1/8 of each of them.[3] An alternative conceptualization is to consistently pick only one of the n lattice points to belong to the given unit cell (so the other n-1 lattice points belong to adjacent unit cells).

The primitive translation vectors a1, a2, a3 span a lattice cell of smallest volume for a particular three-dimensional lattice, and are used to define a crystal translation vector

where u1, u2, u3 are integers, translation by which leaves the lattice invariant.[note 1] That is, for a point in the lattice r, the arrangement of points appears the same from r = r + T as from r.[4]

Since the primitive cell is defined by the primitive axes (vectors) a1, a2, a3, the volume Vp of the primitive cell is given by the parallelepiped from the above axes as

Usually, primitive cells in two and three dimensions are chosen to take the shape parallelograms and parallelepipeds, with an atom at each corner of the cell. This choice of primitive cell is not unique, but volume of primitive cells will always be given by the expression above.[5]

Wigner–Seitz cell[edit]

In addition to the parallelepiped primitive cells, for every Bravais lattice there is another kind of primitive cell called the Wigner–Seitz cell. In the Wigner–Seitz cell, the lattice point is at the center of the cell, and for most Bravais lattices, the shape is not a parallelogram or parallelepiped. This is a type of Voronoi cell. The Wigner–Seitz cell of the reciprocal latticeinmomentum space is called the Brillouin zone.

Conventional cell[edit]

For each particular lattice, a conventional cell has been chosen on a case-by-case basis by crystallographers based on convenience of calculation.[6] These conventional cells may have additional lattice points located in the middle of the faces or body of the unit cell. The number of lattice points, as well as the volume of the conventional cell is an integer multiple (1, 2, 3, or 4) of that of the primitive cell.[7]

Two dimensions[edit]

The parallelogram is the general primitive cell for the plane.

For any 2-dimensional lattice, the unit cells are parallelograms, which in special cases may have orthogonal angles, equal lengths, or both. Four of the five two-dimensional Bravais lattices are represented using conventional primitive cells, as shown below.

Conventional primitive cell
Shape name Parallelogram Rectangle Square Rhombus
Bravais lattice Primitive Oblique Primitive Rectangular Primitive Square Primitive Hexagonal

The centered rectangular lattice also has a primitive cell in the shape of a rhombus, but in order to allow easy discrimination on the basis of symmetry, it is represented by a conventional cell which contains two lattice points.

Primitive cell
Shape name Rhombus
Conventional cell
Bravais lattice Centered Rectangular

Three dimensions[edit]

Aparallelepiped is a general primitive cell for 3-dimensional space.

For any 3-dimensional lattice, the conventional unit cells are parallelepipeds, which in special cases may have orthogonal angles, or equal lengths, or both. Seven of the fourteen three-dimensional Bravais lattices are represented using conventional primitive cells, as shown below.

Conventional primitive cell Hexagonal
Shape name Parallelepiped Oblique rectangular prism Rectangular cuboid Square cuboid Trigonal trapezohedron Cube Right rhombic prism
Bravais lattice Primitive Triclinic Primitive Monoclinic Primitive Orthorhombic Primitive Tetragonal Primitive Rhombohedral Primitive Cubic Primitive Hexagonal

The other seven Bravais lattices (known as the centered lattices) also have primitive cells in the shape of a parallelepiped, but in order to allow easy discrimination on the basis of symmetry, they are represented by conventional cells which contain more than one lattice point.

Primitive cell
Shape name Oblique rhombic prism Right rhombic prism
Conventional cell
Bravais lattice Base-centered Monoclinic Base-centered Orthorhombic Body-centered Orthorhombic Face-centered Orthorhombic Body-centered Tetragonal Body-centered Cubic Face-centered Cubic

See also[edit]

Notes[edit]

  1. ^ Inn dimensions the crystal translation vector would be
That is, for a point in the lattice r, the arrangement of points appears the same from r = r + T as from r.

References[edit]

  1. ^ Ashcroft, Neil W. (1976). "Chapter 4". Solid State Physics. W. B. Saunders Company. p. 72. ISBN 0-03-083993-9.
  • ^ Simon, Steven (2013). The Oxford Solid State Physics (1 ed.). Oxford University Press. p. 114. ISBN 978-0-19-968076-4.
  • ^ "DoITPoMS – TLP Library Crystallography – Unit Cell". Online Materials Science Learning Resources: DoITPoMS. University of Cambridge. Retrieved 21 February 2015.
  • ^ Kittel, Charles (11 November 2004). Introduction to Solid State Physics (8 ed.). Wiley. p. 4. ISBN 978-0-471-41526-8.
  • ^ Mehl, Michael J.; Hicks, David; Toher, Cormac; Levy, Ohad; Hanson, Robert M.; Hart, Gus; Curtarolo, Stefano (2017). "The AFLOW Library of Crystallographic Prototypes: Part 1". Computational Materials Science. 136. Elsevier BV: S1–S828. arXiv:1806.07864. doi:10.1016/j.commatsci.2017.01.017. ISSN 0927-0256. S2CID 119490841.
  • ^ Aroyo, M. I., ed. (2016-12-31). International Tables for Crystallography. Chester, England: International Union of Crystallography. p. 25. doi:10.1107/97809553602060000114. ISBN 978-0-470-97423-0.
  • ^ Ashcroft, Neil W. (1976). Solid State Physics. W. B. Saunders Company. p. 73. ISBN 0-03-083993-9.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Unit_cell&oldid=1160894011#Primitive_cell"

    Categories: 
    Crystallography
    Mineralogy
    Hidden categories: 
    Articles needing additional references from May 2021
    All articles needing additional references
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 19 June 2023, at 10:48 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki