Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Definition  



2.1  Ordinal notations  







3 Upper bound  





4 Examples  



4.1  Theories with proof-theoretic ordinal ω  





4.2  Theories with proof-theoretic ordinal ω2  





4.3  Theories with proof-theoretic ordinal ω3  





4.4  Theories with proof-theoretic ordinal ωn (for n= 2, 3, ... ω)  





4.5  Theories with proof-theoretic ordinal ωω  





4.6  Theories with proof-theoretic ordinal ε0  





4.7  Theories with proof-theoretic ordinal the FefermanSchütte ordinal Γ0  





4.8  Theories with proof-theoretic ordinal the BachmannHoward ordinal  





4.9  Theories with larger proof-theoretic ordinals  







5 Table of ordinal analyses  



5.1  Key  







6 See also  





7 Notes  





8 Citations  





9 References  














Ordinal analysis







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Proof-theoretic ordinal)

Inproof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory.

In addition to obtaining the proof-theoretic ordinal of a theory, in practice ordinal analysis usually also yields various other pieces of information about the theory being analyzed, for example characterizations of the classes of provably recursive, hyperarithmetical, or functions of the theory.[1]

History[edit]

The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinalofPeano arithmeticisε0. See Gentzen's consistency proof.

Definition[edit]

Ordinal analysis concerns true, effective (recursive) theories that can interpret a sufficient portion of arithmetic to make statements about ordinal notations.

The proof-theoretic ordinal of such a theory is the supremum of the order types of all ordinal notations (necessarily recursive, see next section) that the theory can prove are well founded—the supremum of all ordinals for which there exists a notation in Kleene's sense such that proves that is an ordinal notation. Equivalently, it is the supremum of all ordinals such that there exists a recursive relation on (the set of natural numbers) that well-orders it with ordinal and such that proves transfinite induction of arithmetical statements for .

Ordinal notations[edit]

Some theories, such as subsystems of second-order arithmetic, have no conceptualization or way to make arguments about transfinite ordinals. For example, to formalize what it means for a subsystem of Z2 to "prove well-ordered", we instead construct an ordinal notation with order type . can now work with various transfinite induction principles along , which substitute for reasoning about set-theoretic ordinals.

However, some pathological notation systems exist that are unexpectedly difficult to work with. For example, Rathjen gives a primitive recursive notation system that is well-founded iff PA is consistent,[2]p. 3 despite having order type - including such a notation in the ordinal analysis of PA would result in the false equality .

Upper bound[edit]

For any theory that's both -axiomatizable and -sound, the existence of a recursive ordering that the theory fails to prove is well-ordered follows from the bounding theorem, and said provably well-founded ordinal notations are in fact well-founded by -soundness. Thus the proof-theoretic ordinal of a -sound theory that has a axiomatization will always be a (countable) recursive ordinal, that is, less than the Church–Kleene ordinal . [2]Theorem 2.21

Examples[edit]

Theories with proof-theoretic ordinal ω[edit]

Theories with proof-theoretic ordinal ω2[edit]

Theories with proof-theoretic ordinal ω3[edit]

Friedman's grand conjecture suggests that much "ordinary" mathematics can be proved in weak systems having this as their proof-theoretic ordinal.

Theories with proof-theoretic ordinal ωn (for n = 2, 3, ... ω)[edit]

Theories with proof-theoretic ordinal ωω[edit]

Theories with proof-theoretic ordinal ε0[edit]

Theories with proof-theoretic ordinal the Feferman–Schütte ordinal Γ0[edit]

This ordinal is sometimes considered to be the upper limit for "predicative" theories.

Theories with proof-theoretic ordinal the Bachmann–Howard ordinal[edit]

The Kripke-Platek or CZF set theories are weak set theories without axioms for the full powerset given as set of all subsets. Instead, they tend to either have axioms of restricted separation and formation of new sets, or they grant existence of certain function spaces (exponentiation) instead of carving them out from bigger relations.

Theories with larger proof-theoretic ordinals[edit]

Unsolved problem in mathematics:

What is the proof-theoretic ordinal of full second-order arithmetic?[4]

Most theories capable of describing the power set of the natural numbers have proof-theoretic ordinals that are so large that no explicit combinatorial description has yet been given. This includes , full second-order arithmetic () and set theories with powersets including ZF and ZFC. The strength of intuitionistic ZF (IZF) equals that of ZF.

Table of ordinal analyses[edit]

Table of proof-theoretic ordinals
Ordinal First-order arithmetic Second-order arithmetic Kripke-Platek set theory Type theory Constructive set theory Explicit mathematics
,
,
, ,
[1] ,
, [7]p. 13 [7]p. 13, [7]p. 13
[8][7]p. 13 [9]: 40 
[7]p. 13 [7]p. 13, , [7]p. 13, [10]p. 8 [11]p. 869
,[12] [13]: 8 
[14]p. 959
,[15][13] ,[16]: 7  [15]p. 17, [15]p. 5
, [15]p. 52
, [17]
, [18]p. 17, [18]p. 17 [19]p. 140, [19]p. 140, [19]p. 140, [10]p. 8 [11]p. 870
[10]p. 27, [10]p. 27
[20]p.9
[2]
,[21] , [18]p. 22, [18]p. 22, [22] , , ,[23] [24]p. 26 [11]p. 878, [11]p. 878 ,
[25]p.13
[26]
[16]: 7 
[16]: 7 
, [27] [28]p.1167, [28]p.1167
[27] [28]p.1167, [28]p.1167
[27]: 11 
[29]p.233, [29]p.233 [30]p.276 [30]p.276
[29]p.233, [16] [30]p.277 [30]p.277
[16]: 7 
,[31] [16]: 7 
[16]: 7 
[3] [10]p. 8 ,[2] , [11]p. 869
[10]p. 31, [10]p. 31, [10]p. 31
[32]
[10]p. 33, [10]p. 33, [10]p. 33
[4] , [24]p. 26, [24]p. 26, [24]p. 26, [24]p. 26, [24]p. 26 [24]p. 26, [24]p. 26
[4]p. 28 [4]p. 28,
[33]
[34]p. 14
[35]
[33]
[33]
[5]
[4]p. 28
[4]p. 28,
[6]
, , [36] ,
, , ,, , [36]: 72  ,[36]: 72  [36]: 72  , [36]: 72 
, , [36]: 72  [36]: 72 
, , [36]: 72  [36]: 72 
, , [36]: 72 
, , [36]: 72  , [36]: 72 
, , [36]: 72  , [36]: 72 
[7] [4]p. 28,
[37]: 38 
[8]
[9]
[10]
[11] [38] [38]
[12] [39]
[13] [40]
[14] [40]
[41] ,[41] [42]
[41] ,
[43] ,
? [43] , [44]

Key[edit]

This is a list of symbols used in this table:

This is a list of the abbreviations used in this table:

A superscript zero indicates that -induction is removed (making the theory significantly weaker).

See also[edit]

Notes[edit]

1.^ For
2.^ The Veblen function with countably infinitely iterated least fixed points.[clarification needed]
3.^ Can also be commonly written as in Madore's ψ.
4.^ Uses Madore's ψ rather than Buchholz's ψ.
5.^ Can also be commonly written as in Madore's ψ.
6.^ represents the first recursively weakly compact ordinal. Uses Arai's ψ rather than Buchholz's ψ.
7.^ Also the proof-theoretic ordinal of , as the amount of weakening given by the W-types is not enough.
8.^ represents the first inaccessible cardinal. Uses Jäger's ψ rather than Buchholz's ψ.
9.^ represents the limit of the -inaccessible cardinals. Uses (presumably) Jäger's ψ.
10.^ represents the limit of the -inaccessible cardinals. Uses (presumably) Jäger's ψ.
11.^ represents the first Mahlo cardinal. Uses Rathjen's ψ rather than Buchholz's ψ.
12.^ represents the first weakly compact cardinal. Uses Rathjen's Ψ rather than Buchholz's ψ.
13.^ represents the first -indescribable cardinal. Uses Stegert's Ψ rather than Buchholz's ψ.
14.^ is the smallest such that 'is-indescribable') and 'is-indescribable '). Uses Stegert's Ψ rather than Buchholz's ψ.
15.^ represents the first Mahlo cardinal. Uses (presumably) Rathjen's ψ.

Citations[edit]

  1. ^ M. Rathjen, "Admissible Proof Theory and Beyond". In Studies in Logic and the Foundations of Mathematics vol. 134 (1995), pp.123--147.
  • ^ a b c Rathjen, The Realm of Ordinal Analysis. Accessed 2021 September 29.
  • ^ Krajicek, Jan (1995). Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press. pp. 18–20. ISBN 9780521452052. defines the rudimentary sets and rudimentary functions, and proves them equivalent to the Δ0-predicates on the naturals. An ordinal analysis of the system can be found in Rose, H. E. (1984). Subrecursion: functions and hierarchies. University of Michigan: Clarendon Press. ISBN 9780198531890.
  • ^ a b c d e f M. Rathjen, Proof Theory: From Arithmetic to Set Theory (p.28). Accessed 14 August 2022.
  • ^ Rathjen, Michael (2006), "The art of ordinal analysis" (PDF), International Congress of Mathematicians, vol. II, Zürich: Eur. Math. Soc., pp. 45–69, MR 2275588, archived from the original on 2009-12-22{{citation}}: CS1 maint: bot: original URL status unknown (link)
  • ^ D. Madore, A Zoo of Ordinals (2017, p.2). Accessed 12 August 2022.
  • ^ a b c d e f g J. Avigad, R. Sommer, "A Model-Theoretic Approach to Ordinal Analysis" (1997).
  • ^ M. Rathjen, W. Carnielli, "Hydrae and subsystems of arithmetic" (1991)
  • ^ Jeroen Van der Meeren; Rathjen, Michael; Weiermann, Andreas (2014). "An order-theoretic characterization of the Howard-Bachmann-hierarchy". arXiv:1411.4481 [math.LO].
  • ^ a b c d e f g h i j k G. Jäger, T. Strahm, "Second order theories with ordinals and elementary comprehension".
  • ^ a b c d e G. Jäger, "The Strength of Admissibility Without Foundation". Journal of Symbolic Logic vol. 49, no. 3 (1984).
  • ^ B. Afshari, M. Rathjen, "Ordinal Analysis and the Infinite Ramsey Theorem" (2012)
  • ^ a b Marcone, Alberto; Montalbán, Antonio (2011). "The Veblen functions for computability theorists". The Journal of Symbolic Logic. 76 (2): 575–602. arXiv:0910.5442. doi:10.2178/jsl/1305810765. S2CID 675632.
  • ^ S. Feferman, "Theories of finite type related to mathematical practice". In Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics vol. 90 (1977), ed. J. Barwise, pub. North Holland.
  • ^ a b c d M. Heissenbüttel, "Theories of ordinal strength and " (2001)
  • ^ a b c d e f g D. Probst, "A modular ordinal analysis of metapredicative subsystems of second-order arithmetic" (2017)
  • ^ A. Cantini, "On the relation between choice and comprehension principles in second order arithmetic", Journal of Symbolic Logic vol. 51 (1986), pp. 360--373.
  • ^ a b c d Fischer, Martin; Nicolai, Carlo; Pablo Dopico Fernandez (2020). "Nonclassical truth with classical strength. A proof-theoretic analysis of compositional truth over HYPE". arXiv:2007.07188 [math.LO].
  • ^ a b c S. G. Simpson, "Friedman's Research on Subsystems of Second Order Arithmetic". In Harvey Friedman's Research on the Foundations of Mathematics, Studies in Logic and the Foundations of Mathematics vol. 117 (1985), ed. L. Harrington, M. Morley, A. Šcedrov, S. G. Simpson, pub. North-Holland.
  • ^ J. Avigad, "An ordinal analysis of admissible set theory using recursion on ordinal notations". Journal of Mathematical Logic vol. 2, no. 1, pp.91--112 (2002).
  • ^ S. Feferman, "Iterated inductive fixed-point theories: application fo Hancock's conjecture". In Patras Logic Symposion, Studies in Logic and the Foundations of Mathematics vol. 109 (1982).
  • ^ S. Feferman, T. Strahm, "The unfolding of non-finitist arithmetic", Annals of Pure and Applied Logic vol. 104, no.1--3 (2000), pp.75--96.
  • ^ S. Feferman, G. Jäger, "Choice principles, the bar rule and autonomously iterated comprehension schemes in analysis", Journal of Symbolic Logic vol. 48, no. (1983), pp.63--70.
  • ^ a b c d e f g h U. Buchholtz, G. Jäger, T. Strahm, "Theories of proof-theoretic strength ". In Concepts of Proof in Mathematics, Philosophy, and Computer Science (2016), ed. D. Probst, P. Schuster. DOI 10.1515/9781501502620-007.
  • ^ T. Strahm, "Autonomous fixed point progressions and fixed point transfinite recursion" (2000). In Logic Colloquium '98, ed. S. R. Buss, P. Hájek, and P. Pudlák . DOI 10.1017/9781316756140.031
  • ^ G. Jäger, T. Strahm, "Fixed point theories and dependent choice". Archive for Mathematical Logic vol. 39 (2000), pp.493--508.
  • ^ a b c T. Strahm, "Autonomous fixed point progressions and fixed point transfinite recursion" (2000)
  • ^ a b c d C. Rüede, "Transfinite dependent choice and ω-model reflection". Journal of Symbolic Logic vol. 67, no. 3 (2002).
  • ^ a b c C. Rüede, "The proof-theoretic analysis of Σ11 transfinite dependent choice". Annals of Pure and Applied Logic vol. 122 (2003).
  • ^ a b c d T. Strahm, "Wellordering Proofs for Metapredicative Mahlo". Journal of Symbolic Logic vol. 67, no. 1 (2002)
  • ^ F. Ranzi, T. Strahm, "A flexible type system for the small Veblen ordinal" (2019). Archive for Mathematical Logic 58: 711–751.
  • ^ K. Fujimoto, "Notes on some second-order systems of iterated inductive definitions and -comprehensions and relevant subsystems of set theory". Annals of Pure and Applied Logic, vol. 166 (2015), pp. 409--463.
  • ^ a b c Krombholz, Martin; Rathjen, Michael (2019). "Upper bounds on the graph minor theorem". arXiv:1907.00412 [math.LO].
  • ^ W. Buchholz, S. Feferman, W. Pohlers, W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies
  • ^ W. Buchholz, Proof Theory of Impredicative Subsystems of Analysis (Studies in Proof Theory, Monographs, Vol 2 (1988)
  • ^ a b c d e f g h i j k l m n M. Rathjen, "Investigations of Subsystems of Second Order Arithmetic and Set Theory in Strength between and : Part I". Accessed 21 September 2023.
  • ^ M. Rathjen, "The Strength of Some Martin-Löf Type Theories"
  • ^ a b A. Setzer, "A Model for a type theory with Mahlo universe" (1996).
  • ^ M. Rathjen, "Proof Theory of Reflection". Annals of Pure and Applied Logic vol. 68, iss. 2 (1994), pp.181--224.
  • ^ a b Stegert, Jan-Carl, "Ordinal Proof Theory of Kripke-Platek Set Theory Augmented by Strong Reflection Principles" (2010).
  • ^ a b c Arai, Toshiyasu (2023-04-01). "Lectures on Ordinal Analysis". arXiv:2304.00246 [math.LO].
  • ^ Arai, Toshiyasu (2023-04-07). "Well-foundedness proof for -reflection". arXiv:2304.03851 [math.LO].
  • ^ a b Arai, Toshiyasu (2024-02-12). "An ordinal analysis of -Collection". arXiv:2311.12459 [math.LO].
  • ^ Valentin Blot. "A direct computational interpretation of second-order arithmetic via update recursion" (2022).
  • References[edit]

  • Pohlers, Wolfram (1989), Proof Theory, Lecture Notes in Mathematics, vol. 1407, Berlin: Springer-Verlag, doi:10.1007/978-3-540-46825-7, ISBN 3-540-51842-8, MR 1026933
  • Pohlers, Wolfram (1998), "Set Theory and Second Order Number Theory", Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics, vol. 137, Amsterdam: Elsevier Science B. V., pp. 210–335, doi:10.1016/S0049-237X(98)80019-0, ISBN 0-444-89840-9, MR 1640328
  • Rathjen, Michael (1990), "Ordinal notations based on a weakly Mahlo cardinal.", Arch. Math. Logic, 29 (4): 249–263, doi:10.1007/BF01651328, MR 1062729, S2CID 14125063
  • Rathjen, Michael (2006), "The art of ordinal analysis" (PDF), International Congress of Mathematicians, vol. II, Zürich: Eur. Math. Soc., pp. 45–69, MR 2275588, archived from the original on 2009-12-22{{citation}}: CS1 maint: bot: original URL status unknown (link)
  • Rose, H.E. (1984), Subrecursion. Functions and Hierarchies, Oxford logic guides, vol. 9, Oxford, New York: Clarendon Press, Oxford University Press
  • Schütte, Kurt (1977), Proof theory, Grundlehren der Mathematischen Wissenschaften, vol. 225, Berlin-New York: Springer-Verlag, pp. xii+299, ISBN 3-540-07911-4, MR 0505313
  • Setzer, Anton (2004), "Proof theory of Martin-Löf type theory. An Overview", Mathématiques et Sciences Humaines. Mathematics and Social Sciences (165): 59–99
  • Takeuti, Gaisi (1987), Proof theory, Studies in Logic and the Foundations of Mathematics, vol. 81 (Second ed.), Amsterdam: North-Holland Publishing Co., ISBN 0-444-87943-9, MR 0882549
  • Rathjen, Michael (1994), "Proof theory of Reflection", Annals of Pure and Applied Logic, 68 (2): 181–224, doi:10.1016/0168-0072(94)90074-4
  • Stegert, Jan-Carl (2010), Ordinal Proof Theory of Kripke-Platek Set Theory Augmented by Strong Reflection Principles

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Ordinal_analysis&oldid=1229883058"

    Categories: 
    Proof theory
    Ordinal numbers
    Hidden categories: 
    CS1 maint: bot: original URL status unknown
    Articles lacking in-text citations from September 2021
    All articles lacking in-text citations
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from November 2022
    Wikipedia articles needing clarification from September 2023
     



    This page was last edited on 19 June 2024, at 06:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki