Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Proper orbital elements






فارسی
Français
Հայերեն
Русский
Slovenščina
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Proper orbital element)

Distribution of the difference between proper and osculating orbital elements for asteroids with semi-major axes lying between 2 and 4 AU.
Osculating (left) and proper (right) orbital elements for asteroids in the asteroid belt. Note how asteroid family clumps are not discernible on the left.

The proper orbital elementsorproper elements of an orbit are constants of motion of an object in space that remain practically unchanged over an astronomically long timescale. The term is usually used to describe the three quantities:

The proper elements can be contrasted with the osculating Keplerian orbital elements observed at a particular time or epoch, such as the semi-major axis, eccentricity, and inclination. Those osculating elements change in a quasi-periodic and (in principle) predictable manner due to such effects as perturbations from planets or other bodies, and precession (e.g. perihelion precession). In the Solar System, such changes usually occur on timescales of thousands of years, while proper elements are meant to be practically constant over at least tens of millions of years.

For most bodies, the osculating elements are relatively close to the proper elements because precession and perturbation effects are relatively small (see diagram). For over 99% of asteroids in the asteroid belt, the differences are less than 0.02 AU (for semi-major axis a), 0.1 (for eccentricity e), and 2° (for inclination i). Nevertheless, this difference is non-negligible for any purposes where precision is of importance. As an example, the asteroid Ceres has osculating orbital elements (atepoch November 26, 2005)

a e i
2.765515 AU 0.080015 10.5868°

while its proper orbital elements (independent of epoch) are[1]

ap ep ip
2.767096 AU 0.116198 9.6474°

A notable exception to this small-difference rule are asteroids lying in the Kirkwood gaps, which are in strong orbital resonance with Jupiter.

To calculate proper elements for an object, one usually conducts a detailed simulation of its motion over timespans of several millions of years. Such a simulation must take into account many details of celestial mechanics including perturbations by the planets. Subsequently, one extracts quantities from the simulation which remain unchanged over this long timespan; for example, the mean inclination, mean eccentricity, and mean semi-major axis. These are the proper orbital elements.[citation needed]

Historically, various approximate analytic calculations were made, starting with those of Kiyotsugu Hirayama in the early 20th century. Later analytic methods often included thousands of perturbing corrections for each particular object. Presently, the method of choice is to use a computer to numerically integrate the equations of celestial dynamics, and extract constants of motion directly from a numerical analysis of the predicted positions.

At present the most prominent use of proper orbital elements is in the study of asteroid families, following in the footsteps of the pioneering work of Hirayama. A Mars-crosser asteroid 132 Aethra is the lowest numbered asteroid to not have any proper orbital elements.

See also

[edit]

References

[edit]
  1. ^ "AstDyS-2 Ceres Synthetic Proper Orbital Elements". Department of Mathematics, University of Pisa, Italy. Retrieved 2011-09-19.

Further reading

[edit]
[edit]
  • icon Stars
  • Spaceflight
  • Outer space
  • Solar System

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Proper_orbital_elements&oldid=1035078108"

    Category: 
    Orbits
    Hidden categories: 
    Articles needing additional references from December 2008
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from February 2021
     



    This page was last edited on 23 July 2021, at 14:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki