Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Motivation  





2 Types  





3 Examples  



3.1  Reflexive generalized inverse  





3.2  One-sided inverse  





3.3  Inverse of other semigroups (or rings)  







4 Construction  





5 Uses  





6 Generalized inverses of matrices  





7 Transformation consistency properties  





8 See also  





9 Citations  





10 Sources  



10.1  Textbook  





10.2  Publication  
















Generalized inverse






العربية
Български
Català
Čeština
Deutsch
Français
Italiano

Polski
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Pseudoinverse)

Inmathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of matrices than invertible matrices. Generalized inverses can be defined in any mathematical structure that involves associative multiplication, that is, in a semigroup. This article describes generalized inverses of a matrix .

A matrix is a generalized inverse of a matrix if[1][2][3] A generalized inverse exists for an arbitrary matrix, and when a matrix has a regular inverse, this inverse is its unique generalized inverse.[1]

Motivation

[edit]

Consider the linear system

where is an matrix and the column spaceof. If isnonsingular (which implies ) then will be the solution of the system. Note that, if is nonsingular, then

Now suppose is rectangular (), or square and singular. Then we need a right candidate of order such that for all

[4]

That is, is a solution of the linear system . Equivalently, we need a matrix of order such that

Hence we can define the generalized inverse as follows: Given an matrix , an matrix is said to be a generalized inverse of if[1][2][3] The matrix has been termed a regular inverseof by some authors.[5]

Types

[edit]

Important types of generalized inverse include:

Some generalized inverses are defined and classified based on the Penrose conditions:

where denotes conjugate transpose. If satisfies the first condition, then it is a generalized inverseof. If it satisfies the first two conditions, then it is a reflexive generalized inverseof. If it satisfies all four conditions, then it is the pseudoinverseof, which is denoted by and also known as the Moore–Penrose inverse, after the pioneering works by E. H. Moore and Roger Penrose.[2][7][8][9][10][11] It is convenient to define an -inverseof as an inverse that satisfies the subset of the Penrose conditions listed above. Relations, such as , can be established between these different classes of -inverses.[1]

When is non-singular, any generalized inverse and is therefore unique. For a singular , some generalised inverses, such as the Drazin inverse and the Moore–Penrose inverse, are unique, while others are not necessarily uniquely defined.

Examples

[edit]

Reflexive generalized inverse

[edit]

Let

Since , is singular and has no regular inverse. However, and satisfy Penrose conditions (1) and (2), but not (3) or (4). Hence, is a reflexive generalized inverse of .

One-sided inverse

[edit]

Let

Since is not square, has no regular inverse. However, is a right inverse of . The matrix has no left inverse.

Inverse of other semigroups (or rings)

[edit]

The element b is a generalized inverse of an element a if and only if , in any semigroup (orring, since the multiplication function in any ring is a semigroup).

The generalized inverses of the element 3 in the ring are 3, 7, and 11, since in the ring :

The generalized inverses of the element 4 in the ring are 1, 4, 7, and 10, since in the ring :

If an element a in a semigroup (or ring) has an inverse, the inverse must be the only generalized inverse of this element, like the elements 1, 5, 7, and 11 in the ring .

In the ring , any element is a generalized inverse of 0, however, 2 has no generalized inverse, since there is no bin such that .

Construction

[edit]

The following characterizations are easy to verify:

Uses

[edit]

Any generalized inverse can be used to determine whether a system of linear equations has any solutions, and if so to give all of them. If any solutions exist for the n × m linear system

,

with vector of unknowns and vector of constants, all solutions are given by

,

parametric on the arbitrary vector , where is any generalized inverse of . Solutions exist if and only if is a solution, that is, if and only if . If A has full column rank, the bracketed expression in this equation is the zero matrix and so the solution is unique.[12]

Generalized inverses of matrices

[edit]

The generalized inverses of matrices can be characterized as follows. Let , and

be its singular-value decomposition. Then for any generalized inverse , there exist[1] matrices , , and such that

Conversely, any choice of , , and for matrix of this form is a generalized inverse of .[1] The -inverses are exactly those for which , the -inverses are exactly those for which , and the -inverses are exactly those for which . In particular, the pseudoinverse is given by :

Transformation consistency properties

[edit]

In practical applications it is necessary to identify the class of matrix transformations that must be preserved by a generalized inverse. For example, the Moore–Penrose inverse, satisfies the following definition of consistency with respect to transformations involving unitary matrices U and V:

.

The Drazin inverse, satisfies the following definition of consistency with respect to similarity transformations involving a nonsingular matrix S:

.

The unit-consistent (UC) inverse,[13] satisfies the following definition of consistency with respect to transformations involving nonsingular diagonal matrices D and E:

.

The fact that the Moore–Penrose inverse provides consistency with respect to rotations (which are orthonormal transformations) explains its widespread use in physics and other applications in which Euclidean distances must be preserved. The UC inverse, by contrast, is applicable when system behavior is expected to be invariant with respect to the choice of units on different state variables, e.g., miles versus kilometers.

See also

[edit]

Citations

[edit]
  • ^ a b c Nakamura 1991, pp. 41–42
  • ^ a b Rao & Mitra 1971, pp. vii, 20
  • ^ Rao & Mitra 1971, p. 24
  • ^ Rao & Mitra 1971, pp. 19–20
  • ^ a b c Rao & Mitra 1971, p. 19
  • ^ Rao & Mitra 1971, pp. 20, 28, 50–51
  • ^ Ben-Israel & Greville 2003, p. 7
  • ^ Campbell & Meyer 1991, p. 10
  • ^ James 1978, p. 114
  • ^ Nakamura 1991, p. 42
  • ^ James 1978, pp. 109–110
  • ^ Uhlmann 2018
  • Sources

    [edit]

    Textbook

    [edit]

    Publication

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalized_inverse&oldid=1195637823"

    Categories: 
    Matrices
    Mathematical terminology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 14 January 2024, at 18:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki