Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Construction  





2 Properties  





3 Reflection across a line in the plane  





4 Reflection through a hyperplane in ndimensions  





5 See also  





6 Notes  





7 References  





8 External links  














Reflection (mathematics)






العربية
Български
Català
Чӑвашла
Deutsch
Eesti
Español

Italiano
עברית
Magyar
Nederlands

Norsk nynorsk
Português
Română
Русский
Slovenščina
Suomi
Tagalog
ி

Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Reflection (geometry))

A reflection through an axis.

Inmathematics, a reflection (also spelled reflexion)[1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (avertical reflection) would look like q. Its image by reflection in a horizontal axis (ahorizontal reflection) would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.

The term reflection is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. Such isometries have a set of fixed points (the "mirror") that is an affine subspace, but is possibly smaller than a hyperplane. For instance a reflection through a point is an involutive isometry with just one fixed point; the image of the letter p under it would look like a d. This operation is also known as a central inversion (Coxeter 1969, §7.2), and exhibits Euclidean space as a symmetric space. In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane.

Some mathematicians use "flip" as a synonym for "reflection".[2][3][4]

Construction[edit]

Point Q is the reflection of point P through the line AB.

In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

To reflect point P through the line AB using compass and straightedge, proceed as follows (see figure):

Point Q is then the reflection of point P through line AB.

Properties[edit]

The matrix for a reflection is orthogonal with determinant −1 and eigenvalues −1, 1, 1, ..., 1. The product of two such matrices is a special orthogonal matrix that represents a rotation. Every rotation is the result of reflecting in an even number of reflections in hyperplanes through the origin, and every improper rotation is the result of reflecting in an odd number. Thus reflections generate the orthogonal group, and this result is known as the Cartan–Dieudonné theorem.

Similarly the Euclidean group, which consists of all isometries of Euclidean space, is generated by reflections in affine hyperplanes. In general, a group generated by reflections in affine hyperplanes is known as a reflection group. The finite groups generated in this way are examples of Coxeter groups.

Reflection across a line in the plane[edit]

Reflection across an arbitrary line through the origin in two dimensions can be described by the following formula

where denotes the vector being reflected, denotes any vector in the line across which the reflection is performed, and denotes the dot productof with . Note the formula above can also be written as

saying that a reflection of across is equal to 2 times the projectionofon, minus the vector . Reflections in a line have the eigenvalues of 1, and −1.

Reflection through a hyperplane in n dimensions[edit]

Given a vector inEuclidean space , the formula for the reflection in the hyperplane through the origin, orthogonalto, is given by

where denotes the dot productof with . Note that the second term in the above equation is just twice the vector projectionof onto . One can easily check that

Using the geometric product, the formula is

Since these reflections are isometries of Euclidean space fixing the origin they may be represented by orthogonal matrices. The orthogonal matrix corresponding to the above reflection is the matrix

where denotes the identity matrix and is the transpose of a. Its entries are

where δij is the Kronecker delta.

The formula for the reflection in the affine hyperplane not through the origin is

See also[edit]

Notes[edit]

  • ^ Childs, Lindsay N. (2009), A Concrete Introduction to Higher Algebra (3rd ed.), Springer Science & Business Media, p. 251, ISBN 9780387745275
  • ^ Gallian, Joseph (2012), Contemporary Abstract Algebra (8th ed.), Cengage Learning, p. 32, ISBN 978-1285402734
  • ^ Isaacs, I. Martin (1994), Algebra: A Graduate Course, American Mathematical Society, p. 6, ISBN 9780821847992
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Reflection_(mathematics)&oldid=1213764488"

    Categories: 
    Euclidean symmetries
    Functions and mappings
    Linear operators
    Transformation (function)
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles with GND identifiers
     



    This page was last edited on 15 March 2024, at 00:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki