Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Rills created by erosion  



1.1  Rill initiation  





1.2  Significance of rill erosion  







2 See also  





3 References  














Rill






العربية
Aragonés
Català
Deutsch
فارسی
Français

עברית

Română
Русский
Türkçe
اردو
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Rill erosion)

A downslope view of part of the eroding rill network from County Tyrone, Northern Ireland. See below for a close-up view of a single rill

Inhillslope geomorphology, a rill is a shallow channel (no more than a few inches/decimeters deep) cut into soil by the erosive action of flowing surface water. Similar but smaller incised channels are known as microrills; larger incised channels are known as gullies.

Artificial rills are channels constructed to carry a water supply from a distant water source. In landscape or garden design, constructed rills are an aesthetic water feature.

Rills created by erosion[edit]

Water flowing in an actively-eroding rill on bare farmlandinCounty Tyrone, Northern Ireland

Rills are narrow and shallow channels which are eroded into unprotected soil by hillslope runoff. Since soil is regularly left bare during agricultural operations, rills may form on farmland during these vulnerable periods. Rills may also form when bare soil is left exposed following deforestation, or during construction activities.

Rills are fairly easily visible when first incised, so they are often the first indication of an ongoing erosion problem. Unless soil conservation measures are put into place, rills on regularly eroding areas may eventually develop into larger erosional features such as gullies or even (insemi-arid regions) into badlands.

Rill initiation[edit]

Rills are created when fire erodes the soil topsoil on hillsides, and so are significantly affected by seasonal weather patterns. They tend to appear more often in rainier months.[1] Rills begin to form when the runoff shear stress, the ability of surface runoff to detach soil particles, overcomes the soil's shear strength, the ability of soil to resist force working parallel to the soil's surface. This begins the erosion process as water breaks soil particles free and carries them down the slope.[2] These forces explain why sandy, loamy soils are especially susceptible to the formation of rills, whereas dense clays tend to resist rill formation.[3]

Rill initiation: the finger is pointing at a headcut which has just been incised by runoff which is flowing from right to left

Rills cannot form on every surface, and their formation is intrinsically connected to the steepness of the hillside slope. Gravity determines the force of the water, which provides the power required to start the erosional environment necessary to create rills. Therefore, the formation of rills is primarily controlled by the slope of the hillside. Slope controls the depth of the rills, while the length of the slope and the soil's permeability control the number of incisions in an area. Each type of soil has a threshold value, a slope angle below which water velocity cannot produce sufficient force to dislodge enough soil particles for rills to form.[4] For instance, on many non-cohesive slopes, this threshold value hovers around an angle of 2 degrees with a shear velocity between 3 and 3.5 cm/s.[5]

After rills begin forming, they are subjected to variety of other erosional forces which may increase their size and output volume. Up to 37% of erosion in a rill-ridden area may derive from mass movement, or collapse, of rill sidewalls. As water flows through a rill, it will undercut into the walls, triggering collapse. Also, as water seeps into the soil of the walls, they weaken, amplifying the chance of wall collapse. The erosion created by these forces increases the size of the rill while also swelling its output volume.[6]

Less commonly, dissolutionoflimestone and other soluble rocks by slightly acidic rainfall and runoff also results in the formation of rill-like features on the surface of the rock.[7]

Significance of rill erosion[edit]

Landscape shaped by rill erosion. Volgograd Oblast, Russia.

Although rills are small, they transport significant amounts of soil each year. Some estimates claim rill flow has a carrying capacity of nearly ten times that of non-rill, or interrill, areas. In a moderate rainfall, rill flow can carry rock fragments up to 9 cm in diameter downslope. In 1987, scientist J. Poesen conducted an experiment on the Huldenberg field in Belgium which revealed that during a moderate rainfall, rill erosion removed as much as 200 kg (in submerged weight) of rock.[8]

Unfortunately, the considerable effect rills have on landscapes often negatively impacts human activity. Rills have been observed washing away archaeological sites.[8] They are also very common in agricultural areas because sustained agriculture depletes the soil of much of its organic content, increasing the erodibility of the soil. Agricultural machines, such as tractors, compact the soil to the point where water flows over the surface rather than seeping into the soil. Tractor wheel impressions often channel water, providing a perfect environment for the generation of rills. If left alone, these rills may erode considerable amounts of arable soil.[9]

Under proper field management rills are small and are easily repaired by contour tilling the soil. This will prevent, for a time at least, the rills from growing and eroding the landscape more rapidly with time.[10]

See also[edit]

References[edit]

  1. ^ Fullen, M.A. & A.H. Reed. 1987. Rill Erosion on Arable Loamy Sands in the West Midlands of England. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 85-96.
  • ^ Torri, D., M. Sfalanga & G. Chisci. 1987. Threshold Conditions for Incipient Rilling. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 97-105.
  • ^ Loch, R.J. & E.C. Thomas. 1987. Resistance to Rill Erosion: Observations on the Efficiency of Rill Erosion on a Tilled Clay Soil Under Simulated Rain and Run-On Water. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 71-83.
  • ^ Planchon, O., E. Fritcsh & C. Valentin. 1987. Rill Development in a Wet Savannah Environment. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 55-70.
  • ^ Rauws, G. 1987. The Initiation of Rills on Plane Beds of Non-Cohesive Sediments. Catena Supplement 8. W. Germany:Catena Verlag. 107-118.
  • ^ Govers, G. 1987. Spatial and Temporal Variability in Rill Development Processes at the Huldenberg Experimental Site. Catena Supplement 8. W. Germany:Catena Verlag. 17-33.
  • ^ Ford, D.C. & J. Lundberg. 1987. A Review of Dissolutional Rills in Limestone and Other Soluble Rocks. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 119-139
  • ^ a b Poesen, J. 1987. Transport of Rock Fragments by Rill Flow—A Field Study. Catena Supplement 8. W. Germany:Catena Verlag. 35-54.
  • ^ Fullen, M.A. & A.H. Reed. 1987. Rill Erosion of Arable Loamy Sands in the West Midlands of England. Catena Supplement 8. W. Germany:Catena Verlag. 85-96.
  • ^ "The Erosion Process". Archived from the original on 2010-06-28. Retrieved 2010-10-07.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Rill&oldid=1219596092"

    Categories: 
    Fluvial landforms
    Soil erosion
    Geomorphology
    Soil
    Irrigation
    Irrigation canals
    Garden features
    Persian gardens
    Islamic architectural elements
    Architectural elements
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 18 April 2024, at 18:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki