Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Undirected solution and T-joins  





2 Directed solution  





3 Applications  





4 Variants  





5 See also  





6 References  





7 External links  














Chinese postman problem






Čeština
Deutsch
Español
Euskara
فارسی
Français
Hrvatski
Italiano
עברית
Magyar
Nederlands

Polski
Português
Русский
Simple English
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Route inspection problem)

A worked example of an undirected Chinese postman problem:

  1. Each street must be traversed at least once, starting and ending at the post office at A.
  • Four vertices with odd degree (orange) are found on its equivalent graph.
  • The pairing with the lowest total length is found.
  • After corresponding edges are added (red), the length of the Eulerian circuit is found.
  • Ingraph theory, a branch of mathematics and computer science, Guan's route problem, the Chinese postman problem, postman tourorroute inspection problem is to find a shortest closed path or circuit that visits every edge of an (connected) undirected graph at least once. When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit.[1] It can be solved in polynomial time,[2] unlike the Travelling Salesman Problem which is NP-hard.[3] It is different from the Travelling Salesman Problem in that the travelling salesman cannot repeat visited nodes.

    The problem was originally studied by the Chinese mathematician Meigu Guan in 1960, whose Chinese paper was translated into English in 1962.[4] The original name "Chinese postman problem" was coined in his honor; different sources credit the coinage either to Alan J. GoldmanorJack Edmonds, both of whom were at the U.S. National Bureau of Standards at the time.[5][6]

    A generalization is to choose any set T of evenly many vertices that are to be joined by an edge set in the graph whose odd-degree vertices are precisely those of T. Such a set is called a T-join. This problem, the T-join problem, is also solvable in polynomial time by the same approach that solves the postman problem.

    Undirected solution and T-joins

    [edit]

    The undirected route inspection problem can be solved in polynomial time by an algorithm based on the concept of a T-join. Let T be a set of vertices in a graph. An edge set J is called a T-join if the collection of vertices that have an odd number of incident edges in J is exactly the set T. A T-join exists whenever every connected component of the graph contains an even number of vertices in T. The T-join problem is to find a T-join with the minimum possible number of edges or the minimum possible total weight.

    For any T, a smallest T-join (when it exists) necessarily consists of paths that join the vertices of T in pairs. The paths will be such that the total length or total weight of all of them is as small as possible. In an optimal solution, no two of these paths will share any edge, but they may have shared vertices. A minimum T-join can be obtained by constructing a complete graph on the vertices of T, with edges that represent shortest paths in the given input graph, and then finding a minimum weight perfect matching in this complete graph. The edges of this matching represent paths in the original graph, whose union forms the desired T-join. Both constructing the complete graph, and then finding a matching in it, can be done in O(n3) computational steps.

    For the route inspection problem, T should be chosen as the set of all odd-degree vertices. By the assumptions of the problem, the whole graph is connected (otherwise no tour exists), and by the handshaking lemma it has an even number of odd vertices, so a T-join always exists. Doubling the edges of a T-join causes the given graph to become an Eulerian multigraph (a connected graph in which every vertex has even degree), from which it follows that it has an Euler tour, a tour that visits each edge of the multigraph exactly once. This tour will be an optimal solution to the route inspection problem.[7][2]

    Directed solution

    [edit]

    On a directed graph, the same general ideas apply, but different techniques must be used. If the directed graph is Eulerian, one need only find an Euler cycle. If it is not, one must find T-joins, which in this case entails finding paths from vertices with an in-degree greater than their out-degree to those with an out-degree greater than their in-degree such that they would make in-degree of every vertex equal to its out-degree. This can be solved as an instance of the minimum-cost flow problem in which there is one unit of supply for every unit of excess in-degree, and one unit of demand for every unit of excess out-degree. As such it is solvable in O(|V|2|E|) time. A solution exists if and only if the given graph is strongly connected.[2][8]

    Applications

    [edit]

    Various combinatorial problems have been reduced to the Chinese Postman Problem, including finding a maximum cut in a planar graph and a minimum-mean length circuit in an undirected graph.[9]

    Variants

    [edit]

    A few variants of the Chinese Postman Problem have been studied and shown to be NP-complete.[10]

    See also

    [edit]

    References

    [edit]
    1. ^ Roberts, Fred S.; Tesman, Barry (2009), Applied Combinatorics (2nd ed.), CRC Press, pp. 640–642, ISBN 9781420099829
  • ^ a b c Edmonds, J.; Johnson, E.L. (1973), "Matching Euler tours and the Chinese postman problem" (PDF), Mathematical Programming, 5: 88–124, doi:10.1007/bf01580113, S2CID 15249924
  • ^ "The Travelling Salesman Problem" (PDF).
  • ^ Kwan, Mei-ko (1960), "Graphic programming using odd or even points", Acta Mathematica Sinica (in Chinese), 10: 263–266, MR 0162630. Translated in Chinese Mathematics 1: 273–277, 1962.
  • ^ Pieterse, Vreda; Black, Paul E., eds. (September 2, 2014), "Chinese postman problem", Dictionary of Algorithms and Data Structures, National Institute of Standards and Technology, retrieved 2016-04-26
  • ^ Grötschel, Martin; Yuan, Ya-xiang (2012), "Euler, Mei-Ko Kwan, Königsberg, and a Chinese postman" (PDF), Optimization stories: 21st International Symposium on Mathematical Programming, Berlin, August 19–24, 2012, Documenta Mathematica, Extra: 43–50, MR 2991468.
  • ^ Lawler, E.L. (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston
  • ^ Eiselt, H. A.; Gendeaeu, Michel; Laporte, Gilbert (1995), "Arc Routing Problems, Part 1: The Chinese Postman Problem", Operations Research, 43 (2): 231–242, doi:10.1287/opre.43.2.231, hdl:11059/14013
  • ^ A. Schrijver, Combinatorial Optimization, Polyhedra and Efficiency, Volume A, Springer. (2002).
  • ^ Crescenzi, P.; Kann, V.; Halldórsson, M.; Karpinski, M.; Woeginger, G, A compendium of NP optimization problems, KTH NADA, Stockholm, retrieved 2008-10-22
  • ^ Guan, Meigu (1984), "On the windy postman problem", Discrete Applied Mathematics, 9 (1): 41–46, doi:10.1016/0166-218X(84)90089-1, MR 0754427.
  • ^ a b Lenstra, J.K.; Rinnooy Kan, A.H.G. (1981), "Complexity of vehicle routing and scheduling problems" (PDF), Networks, 11 (2): 221–227, doi:10.1002/net.3230110211
  • ^ Roberts, Fred S.; Tesman, Barry (2009), Applied Combinatorics (2nd ed.), CRC Press, pp. 642–645, ISBN 9781420099829
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Chinese_postman_problem&oldid=1234843286"

    Categories: 
    NP-complete problems
    Computational problems in graph theory
    Hidden categories: 
    CS1 Chinese-language sources (zh)
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Commons category link from Wikidata
     



    This page was last edited on 16 July 2024, at 12:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki