Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Open-hearth process  





2 History  





3 See also  





4 References  





5 Further reading  





6 External links  














Open-hearth furnace






العربية
Català
Čeština
Dansk
Deutsch
Español
Esperanto
فارسی
Français
Gaeilge
Galego

Հայերեն
Hrvatski
Italiano
Қазақша
Magyar
Nederlands

Oʻzbekcha / ўзбекча
Polski
Português
Русский
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Siemens-Martin)

Open hearth furnace workers in Ukraine taking a steel sample, c. 2012
Tapping open-hearth furnace, VEB Rohrkombinat Riesa, East Germany, 1982

Anopen-hearth furnaceoropen hearth furnace is any of several kinds of industrial furnace in which excess carbon and other impurities are burnt out of pig irontoproduce steel.[1] Because steel is difficult to manufacture owing to its high melting point, normal fuels and furnaces were insufficient for mass production of steel, and the open-hearth type of furnace was one of several technologies developed in the nineteenth century to overcome this difficulty. Compared with the Bessemer process, which it displaced, its main advantages were that it did not expose the steel to excessive nitrogen[clarification needed] (which would cause the steel to become brittle), was easier to control, and permitted the melting and refining of large amounts of scrap iron and steel.[2]

The open-hearth furnace was first developed by German-born engineer Carl Wilhelm Siemens. In 1865, the French engineer Pierre-Émile Martin took out a licence from Siemens and first applied his regenerative furnace for making steel. Their process was known as the Siemens–Martin processorMartin–Siemens process, and the furnace as an "open-hearth" furnace. Most open hearth furnaces were closed by the early 1990s, not least because of their slow operation, being replaced by the basic oxygen furnaceorelectric arc furnace.[2]

Whereas the earliest example of open-hearth steelmaking is found about 2000 years ago in the culture of the Haya people, in present day Tanzania,[3] and in Europe in the Catalan forge, invented in Spain in the 8th century, it is usual to confine the term to certain 19th-century and later steelmaking processes, thus excluding bloomeries (including the Catalan forge), finery forges, and puddling furnaces from its application.

Open-hearth process[edit]

The open-hearth process is a batch process and a batch is called a "heat". The furnace is first inspected for possible damage. Once it is ready or repaired, it is charged with light scrap, such as sheet metal, shredded vehicles or waste metal. The furnace is heated using burning gas. Once the charge has melted, heavy scrap, such as building, construction or steel milling scrap is added, together with pig iron from blast furnaces. Once all the steel has melted, slag-forming agents such as limestone are added. Atmospheric oxygen in contact with molten pig iron directly oxidizes the carbon in excess it contains to form carbon monoxide (CO). Additionally, Fe(II) present in iron(II) oxide (FeO) and other impurities also contribute to decarburize the pig iron by oxidizing carbon into CO and simultaneously reducing Fe(II) into metallic Fe. The formed carbon monoxide (CO) is flushed away in the fumes, while steel is formed. To increase the oxidizing power of the "heat", more iron oxide ore can be added.[4]

The process is far slower than that of the Bessemer converter and thus easier to control and sample for quality assessment. Preparing a heat usually takes eight to eight and a half hours, and longer to finish the conversion into steel. As the process is slow, it is not necessary to burn all the carbon away as in the Bessemer process, but the process can be terminated at any given point when the desired carbon content has been achieved.[4]

The furnace is tapped in the same way a blast furnace is tapped; a hole is drilled in the side of the hearth and the raw steel flows out. Once all the steel has been tapped, the slag is skimmed away. The raw steel may be cast into ingots, a process called teeming, or it may be used in continuous casting in the rolling mill.[4]

The regenerators are the distinctive feature of the furnace and consist of fire-brick flues filled with bricks set on edge and arranged in such a way as to have a great number of small passages between them.[4] The bricks absorb most of the heat from the outgoing waste gases and return it later to the incoming cold gases for combustion.

History[edit]

Tapping open hearth furnace, Fagersta steelmill, Sweden, 1967.

Carl Wilhelm Siemens developed the Siemens regenerative furnace in the 1850s, and claimed in 1857 to be recovering enough heat to save 70–80% of the fuel. This furnace operates at a high temperature by using regenerative preheating of fuel and air for combustion. In regenerative preheating, the exhaust gases from the furnace are pumped into a chamber containing bricks, where heat is transferred from the gases to the bricks. The flow of the furnace is then reversed so that fuel and air pass through the chamber and are heated by the bricks. Through this method, an open-hearth furnace can reach temperatures high enough to melt steel, but Siemens did not initially use it for that.[5]

In 1865, the French engineer Pierre-Émile Martin took out a license from Siemens and first applied his regenerative furnace for making steel. The most appealing characteristic of the Siemens regenerative furnace is the rapid production of large quantities of basic steel, used for example to construct high-rise buildings.[5] The usual size of furnaces is 50 to 100 tons, but for some special processes they may have a capacity of 250 or even 500 tons.

The Siemens–Martin process complemented rather than replaced the Bessemer process. It is slower and thus easier to control, allowing production of better product. It also permits the melting and refining of large amounts of scrap steel, further lowering steel production costs and recycling an otherwise troublesome waste material. One of its important drawbacks is that melting and refining a charge takes several hours. This was an advantage in the early 20th century, as it gave plant chemists time to analyze the steel and decide how much longer to refine it. But by about 1975, electronic instruments such as atomic absorption spectrophotometers had made analysis of the steel much easier and faster. The work environment around an open-hearth furnace is said to be extremely dangerous, although that may be even more true of the environment around a basic oxygen or electric arc furnace.[5]

On the one hand, the process achieves lesser economies of scale than the Bessemer, so its steel was costlier in former's heyday, but on the other, it was more suitable for countries which couldn't produce lots of steel anyway due to limitations of natural resources.[6]

Basic oxygen steelmaking eventually replaced the open-hearth furnace. It rapidly superseded both the Bessemer and Siemens–Martin processes in western Europe by the 1950s and in eastern Europe by the 1980s. Open-hearth steelmaking had superseded the Bessemer process in UK by 1900, but elsewhere in Europe, especially in Germany, the Bessemer and Thomas processes were used until the late 1960s when they were superseded by basic oxygen steelmaking. The last open-hearth furnace in former East Germany was stopped in 1993. In the US, steel production using the Bessemer process ended in 1968 and the open-hearth furnaces had stopped by 1992. In Hunedoara steel works, Romania the last 420-tonne capacity open-hearth furnace was shut down on 12 June 1999 and demolished and scrapped between 2001 and 2003, but the eight smokestacks of the furnaces remained until February 2011. The last open-hearth shop in China was shut down in 2001. The nation with the highest share of steel produced with open-hearth furnaces (almost 50%), as of 2010s, was Ukraine.[7] The process is still in use in India and some parts of Ukraine. Russia retired its last hearth furnace in March 2018, and was considering preserving it as a museum artifact.[8]

See also[edit]

References[edit]

  1. ^ K. Barraclough, Steelmaking 1850-1900 (Institute of Metals, London 1990), 137-203.
  • ^ a b Philippe Mioche, « Et l'acier créa l'Europe », Matériaux pour l'histoire de notre temps, vol. 47, 1997, p. 29-36
  • ^ Avery, Donald; Schmidt, Peter (1978). "Complex Iron Smelting and Prehistoric Culture in Tanzania". Science. 201 (4361): 1085–1089. Bibcode:1978Sci...201.1085S. doi:10.1126/science.201.4361.1085. ISSN 0036-8075. JSTOR 1746308. PMID 17830304. S2CID 37926350.
  • ^ a b c d A Study of the Open Hearth: A Treatise on the Open Hearth Furnace and the Manufacture of Open Hearth Steel. Harbison-Walker Refractories Company. (2015), 102 pag, ISBN 1341212122, ISBN 978-1341212123
  • ^ a b c Basic Open Hearth Steelmaking, with Supplement on Oxygen in Steelmaking, third edition (The Seely W. Mudd Series) The American Institute of Mining, Metallurgical, and Petroleum Engineers (1964). Gerhard, Derge. ASIN B00IJLRL40.
  • ^ Sáez-García, Miguel A. (2017). "Business and State in the development of the steel industry in Spain and Italy (C.1880–1929)". Business History. 59 (2): 159–178. doi:10.1080/00076791.2016.1172570. hdl:10045/66416. S2CID 156562137.
  • ^ "Archived copy" (PDF). Archived from the original (PDF) on 2017-08-09. Retrieved 2006-12-09.{{cite web}}: CS1 maint: archived copy as title (link)
  • ^ "В России закрывается последняя крупная мартеновская печь". 6 March 2018.
  • Further reading[edit]

    External links[edit]



    Retrieved from "https://en.wikipedia.org/w/index.php?title=Open-hearth_furnace&oldid=1221338134"

    Categories: 
    Steelmaking
    Industrial furnaces
    Hidden categories: 
    CS1 maint: archived copy as title
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from March 2024
    Commons category link from Wikidata
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with EMU identifiers
     



    This page was last edited on 29 April 2024, at 09:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki