Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In color spaces  



1.1  In dichromatic color spaces  







2 Spectral color terms  





3 Extra-spectral colors  





4 Notes  





5 References  














Spectral color






العربية
Azərbaycanca

Deutsch
Eesti
Esperanto
Lëtzebuergesch
Македонски
Norsk nynorsk
Português
Русский
Slovenčina
Српски / srpski
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Spectral colors)

Arainbow is a decomposition of white light into all of the spectral colors.
Laser beams are monochromatic light, thereby exhibiting spectral colors.

Aspectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelengthorfrequencyoflight in the visible spectrum, or a relatively narrow spectral band (e.g. lasers). Every wave of visible light is perceived as a spectral color; when viewed as a continuous spectrum, these colors are seen as the familiar rainbow. Non-spectral colors (orextra-spectral colors) are evoked by a combination of spectral colors.

In color spaces[edit]

The spectrum colors are the colors on the horseshoe-shaped curve on the outside of the diagram. All other colors are not spectral: the bottom line is the line of purples, whilst within the interior of the diagram are unsaturated colors that are various mixtures of a spectral color or a purple color with white, a grayscale color. White is in the central part of the interior of the diagram, since when all colors of light are mixed together, they produce white.

Incolor spaces which include all, or most spectral colors, they form a part of boundary of the set of all real colors. When considering a three-dimensional color space (which includes luminance), the spectral colors form a surface. When excluding luminance and considering a two-dimensional color space (chromaticity diagram), the spectral colors form a curve known as the spectral locus. For example, the spectral locus of the CIEXYZ chromaticity diagram contains all the spectral colors (to the eye of the standard observer).

A trichromatic color space is defined by three primary colors, which can theoretically be spectral colors. In this case, all other colors are inherently non-spectral. In reality, the spectral bandwidth of most primaries means that most color spaces are entirely non-spectral. Due to different chromaticity properties of different spectral segments, and also due to practical limitations of light sources, the actual distance between RGB pure color wheel colors and spectral colors shows a complicated dependence on the hue. Due to the location of R and G primaries near the 'almost flat' spectral segment, RGB color space is reasonably good with approximating spectral orange, yellow, and bright (yellowish) green, but is especially poor in reproducing the visual appearance of spectral colors in the vicinity of central green, and between green and blue, as well as extreme spectral colors approaching IRorUV.

Spectral colors are universally included in scientific color models such as CIE 1931, but industrial and consumer color spaces such as sRGB, CMYK, and Pantone, do not typically include any spectral colors. Exceptions include Rec. 2020, which uses three spectral colors as primaries (and therefore only includes precisely those three spectral colors), and color spaces such as the ProPhoto RGB color space which use imaginary colors as primaries.

Incolor models capable of representing spectral colors,[note 1][1] such as CIELUV, a spectral color has the maximal saturation. In Helmholtz coordinates, this is described as 100% purity.

In dichromatic color spaces[edit]

Indichromatic color vision there is no distinction between spectral and non-spectral colors. Their entire gamut can be represented by spectral colors.[note 2]

Spectral color terms[edit]

The spectrum is often divided into color terms or names, but aligning boundaries between color terms to a specific wavelength is very subjective.

The first person to decompose white light and name the spectral colors was Isaac Newton. Early in the study of radiometry, Newton was not able to measure the wavelength of the light, but his experiments were repeated contemporarily to estimate wavelengths where his color term boundaries probably lay.[2] Newton's color terms included red, orange, yellow, green, blue, indigo, and violet; this color sequence is still used to describe spectral colors colloquially and a mnemonic for it is commonly known as "Roy G. Biv".

In modern divisions of the spectrum, indigo is often omitted[broken anchor] and a blue-green color is sometimes included. Some have argued that Newton's indigo would be equivalent to our modern blue, and his blue equivalent to our blue-green. However, his nonintuitive choices can be better explained. In the table below, note how wavelength is not proportional to hue (which is approximately perceptually uniform). Color systems such as ISCC-NBS attempt to divide the spectrum into sections that appear perceptually uniform. On the other hand, Newton's sections are approximately uniform in size as they would have physically appeared in the diffracted spectrum, i.e. each about 40nm "wide". In this theory, the sections were divided without influence of his own perception, and each section was then given a name that best suited its average color. In contrast, the sections in the ISCC-NBS spectrum vary greatly in wavelength range, but are more consistent in the hue degree range. Both instances deviate from the basic color terms used in English, only some of which are spectral colors.

The table below includes several definitions where the spectral colors have been categorized in color terms. The hue that a given monochromatic light evokes is approximated at the right side of the table.

Spectral color classifications
nm Newton*[2] ISCC-NBS*[3] Malacara[4] CRC Handbook[5] Hue*
380 Violet Violet Violet Violet 250°
390 250°
400 250°
410 249°
420 249°
430 Indigo Blue 249°
440 Blue 247°
450 Blue Blue 245°
460 242°
470 238°
480 226°
490 Green Blue-Green 190°
500 Green Cyan Green 143°
510 126°
520 Green 122°
530 Yellow 117°
540 113°
550 Yellow-Green 104°
560 93°
570 Yellow Yellow 62°
580 Orange Yellow Orange 28°
590 Orange Orange 14°
600
610 Red
620 Red Red
630 Red
640
650
660
670
680
690
700
710
720
730
740
750

Extra-spectral colors[edit]

Among some of the colors that are not spectral colors are:

Notes[edit]

  1. ^ The HSL and HSV systems do not qualify, because many spectral colors lie rather far from their gamut.
  • ^ This is true for dichromats with photoreceptor cells with overlapping spectral sensitivity curves. If the spectral sensitivity curves do not overlap, then all colors except for the extremes (where one of the cones is not excited) would be non-spectral. However, there are no known vision systems where the cones' spectral sensitivity curves do not overlap.
  • References[edit]

    1. ^ "Perceiving Color" (PDF). courses.washington.edu.
  • ^ a b McLaren, K. (1985). "Newton's indigo". Color Research & Application. 10 (4): 225–229. doi:10.1002/col.5080100411.
  • ^ Kelly, Kenneth L. (November 1, 1943). "Color Designations for Lights". Journal of the Optical Society of America. 33 (11): 627. doi:10.1364/JOSA.33.000627.
  • ^ Malacara, Daniel (2011). Color vision and colorimetry : theory and applications (2nd ed.). Bellingham, Wash.: SPIE. ISBN 9780819483973.
  • ^ Bruno, Thomas J. (2006). CRC handbook of fundamental spectroscopic correlation charts. Boca Raton, FL: CRC Press. ISBN 9780849332500.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Spectral_color&oldid=1215632795"

    Category: 
    Color
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use American English from March 2021
    All Wikipedia articles written in American English
    Use mdy dates from March 2021
    Articles needing additional references from December 2009
    All articles needing additional references
    Pages with broken anchors
     



    This page was last edited on 26 March 2024, at 07:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki