Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Synthesis  



2.1  Amoco Process  



2.1.1  Mechanism  





2.1.2  Challenges  





2.1.3  Alternative reaction media  







2.2  Promotors and additives  





2.3  Alternative routes  







3 Applications  



3.1  Other uses  







4 Solubility  





5 Toxicity  





6 Biodegradation  





7 See also  





8 References  





9 Cited sources  





10 External links and further reading  














Terephthalic acid






العربية
تۆرکجه
Čeština
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français

Հայերեն
ि
Bahasa Indonesia
Italiano
עברית
Magyar
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Terephthalate)

Terephthalic acid
Skeletal formula
Ball-and-stick model of the terephthalic acid molecule
Names
Preferred IUPAC name

Benzene-1,4-dicarboxylic acid

Other names

Terephthalic acid
para-Phthalic acid
TPA
PTA
BDC

Identifiers

CAS Number

3D model (JSmol)

3DMet

Beilstein Reference

1909333
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.573 Edit this at Wikidata
EC Number
  • 202-830-0

Gmelin Reference

50561
KEGG

PubChem CID

RTECS number
  • WZ0875000
UNII

CompTox Dashboard (EPA)

  • InChI=1S/C8H6O4/c9-7(10)5-1-2-6(4-3-5)8(11)12/h1-4H,(H,9,10)(H,11,12) checkY

    Key: KKEYFWRCBNTPAC-UHFFFAOYSA-N checkY

  • InChI=1/C8H6O4/c9-7(10)5-1-2-6(4-3-5)8(11)12/h1-4H,(H,9,10)(H,11,12)

    Key: KKEYFWRCBNTPAC-UHFFFAOYAF

  • O=C(O)c1ccc(C(O)=O)cc1

Properties

Chemical formula

C8H6O4
Molar mass 166.132 g·mol−1
Appearance White crystals or powder
Density 1.519 g/cm3[1]
Melting point 300 °C (572 °F; 573 K) Sublimes[1]
Boiling point Decomposes

Solubility in water

0.065 g/L at 25 °C[2]
Solubility polar organic solvents aqueous base
Acidity (pKa) 3.54, 4.34[3]

Magnetic susceptibility (χ)

−83.5×10−6 cm3/mol[4]
Structure

Dipole moment

2.6D [5]
Thermochemistry[6]

Std enthalpy of
formation
fH298)

−816.1 kJ/mol
Hazards
GHS labelling:

Pictograms

GHS07: Exclamation mark

Signal word

Warning

Hazard statements

H315, H319, H335

Precautionary statements

P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Flash point 260 °C (500 °F; 533 K)[9]

Autoignition
temperature

496 °C (925 °F; 769 K)[9]

Threshold limit value (TLV)

10 mg/m3[7] (STEL)
Lethal dose or concentration (LD, LC):

LD50 (median dose)

>1 g/kg (oral, mouse)[8]
Safety data sheet (SDS) MSDS sheet
Related compounds

Related carboxylic acids

Phthalic acid
Isophthalic acid
Benzoic acid
p-Toluic acid

Related compounds

p-Xylene
Polyethylene terephthalate
Dimethyl terephthalate
Supplementary data page
Terephthalic acid (data page)

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Terephthalic acid is an organic compound with formulaC6H4(CO2H)2. This white solid is a commodity chemical, used principally as a precursor to the polyester PET, used to make clothing and plastic bottles. Several million tons are produced annually.[8] The common name is derived from the turpentine-producing tree Pistacia terebinthus and phthalic acid.

Terephthalic acid is also used in the production of PBT plastic (polybutylene terephthalate).[10]

History

[edit]

Terephthalic acid was first isolated (from turpentine) by the French chemist Amédée Cailliot (1805–1884) in 1846.[11] Terephthalic acid became industrially important after World War II. Terephthalic acid was produced by oxidation of p-xylene with 30-40% nitric acid. Air oxidation of p-xylene gives p-toluic acid, which resists further air-oxidation. Esterification of p-toluic acid to methyl p-toluate (CH3C6H4CO2CH3) opens the way for further oxidation to monomethyl terephthalate. In the Dynamit−Nobel process these two oxidations and the esterification were performed in a single reactor. The reaction conditions also lead to a second esterification, producing dimethyl terephthalate, which could be hydrolysed to terepthalic acid. In 1955, Mid-Century Corporation and ICI announced the bromide-catalysed oxidation of p-toluic acid directly to terephthalic acid, without the need to isolate intermediates and still using air as the oxidant. Amoco (as Standard Oil of Indiana) purchased the Mid-Century/ICI technology, and the process is now known by their name.[12]

Synthesis

[edit]

Amoco Process

[edit]

In the Amoco process, which is widely adopted worldwide, terephthalic acid is produced by catalytic oxidationofp-xylene:[12]

Terephthalic acid

The process uses a cobaltmanganesebromide catalyst. The bromide source can be sodium bromide, hydrogen bromideortetrabromoethane. Bromine functions as a regenerative source of free radicals. Acetic acid is the solvent and compressed air serves as the oxidant. The combination of bromine and acetic acid is highly corrosive, requiring specialized reactors, such as those lined with titanium. A mixture of p-xylene, acetic acid, the catalyst system, and compressed air is fed to a reactor.

Mechanism

[edit]

The oxidation of p-xylene proceeds by a free radical process. Bromine radicals decompose cobalt and manganese hydroperoxides. The resulting oxygen-based radicals abstract hydrogen from a methyl group, which have weaker C–H bonds than does the aromatic ring. Many intermediates have been isolated. p-xylene is converted to p-toluic acid, which is less reactive than the p-xylene owing to the influence of the electron-withdrawing carboxylic acid group. Incomplete oxidation produces 4-carboxybenzaldehyde (4-CBA), which is often a problematic impurity.[12][13] [14]

Oxidation of p-xylene to TPA

Challenges

[edit]

Approximately 5% of the acetic acid solvent is lost by decomposition or "burning". Product loss by decarboxylationtobenzoic acid is common. The high temperature diminishes oxygen solubility in an already oxygen-starved system. Pure oxygen cannot be used in the traditional system due to hazards of flammable organic–O2 mixtures. Atmospheric air can be used in its place, but once reacted needs to be purified of toxins and ozone depleters such as methylbromide before being released. Additionally, the corrosive nature of bromides at high temperatures requires the reaction be run in expensive titanium reactors.[15][16]

Alternative reaction media

[edit]

The use of carbon dioxide overcomes many of the problems with the original industrial process. Because CO2 is a better flame inhibitor than N2, a CO2 environment allows for the use of pure oxygen directly, instead of air, with reduced flammability hazards. The solubility of molecular oxygen in solution is also enhanced in the CO2 environment. Because more oxygen is available to the system, supercritical carbon dioxide (Tc = 31 °C) has more complete oxidation with fewer byproducts, lower carbon monoxide production, less decarboxylation and higher purity than the commercial process.[15][16]

Insupercritical water medium, the oxidation can be effectively catalyzed by MnBr2 with pure O2 in a medium-high temperature. Use of supercritical water instead of acetic acid as a solvent diminishes environmental impact and offers a cost advantage. However, the scope of such reaction systems is limited by the even more demanding conditions than the industrial process (300–400 °C, >200 bar).[17]

Promotors and additives

[edit]

As with any large-scale process, many additives have been investigated for potential beneficial effects. Promising results have been reported with the following.[12]

Alternative routes

[edit]

Terephthalic acid can be prepared in the laboratory by oxidizing many para-disubstituted derivatives of benzene, including caraway oil or a mixture of cymene and cuminol with chromic acid.

Although not commercially significant, there is also the so-called "Henkel process" or "Raecke process", named after the company and patent holder, respectively. This process involves the transfer of carboxylate groups. For example potassium benzoate disproportionates to potassium terephthalate, and potassium phthalate rearranges to potassium terephthalate.[18][19]

Lummus (now a subsidiary of McDermott International) has reported a route from the dinitrile, which can be obtained by ammoxidationofp-xylene.

Applications

[edit]

Virtually the entire world's supply of terephthalic acid and dimethyl terephthalate are consumed as precursors to polyethylene terephthalate (PET). World production in 1970 was around 1.75 million tonnes.[8] By 2006, global purified terephthalic acid (PTA) demand had exceeded 30 million tonnes. A smaller, but nevertheless significant, demand for terephthalic acid exists in the production of polybutylene terephthalate and several other engineering polymers.[20]

Other uses

[edit]

Solubility

[edit]

Terephthalic acid is poorly soluble in water and alcohols; consequently, until about 1970 terephthalic acid was purified as its dimethyl ester. It sublimes when heated.

Solubility (g/100 g solvent)
Solvent 25 °C 120 °C 160 °C 200 °C 240 °C
Methanol 0.1 2.9 15
Water 0.0019 0.08 0.38 1.7 9.0
Acetic acid 0.035 0.3 0.75 1.8 4.5
Formic acid 0.5
Sulfuric acid 2
Dimethyl formamide 6.7
Dimethyl sulfoxide 20
Vapor pressure
Temperature
(°C)
Pressure
(kPa)
303 1.3
353 13.3
370 26.7
387 53.3
404 101.3

Toxicity

[edit]

Terephthalic acid and its dimethyl ester have very low toxicity, with LD50 >1 g/kg (oral, mouse).[8]

Biodegradation

[edit]

InComamonas thiooxydans strain E6,[21] terephthalic acid is biodegraded to protocatechuic acid, a common natural product, via a reaction pathway initiated by terephthalate 1,2-dioxygenase. Combined with the previously known PETase and MHETase, a full pathway for PET plastic degradation can be engineered.[22]

See also

[edit]

References

[edit]
  1. ^ a b Haynes, p. 3.492
  • ^ Haynes, p. 5.163
  • ^ Haynes, p. 5.96
  • ^ Haynes, p. 3.579
  • ^ Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S. (2015). "Electronic [UV–Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR–mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations". Spectrochimica Acta Part A. 139: 229–242. Bibcode:2015AcSpA.139..229K. doi:10.1016/j.saa.2014.11.112. PMID 25561302.
  • ^ Haynes, p. 5.37
  • ^ Haynes, p. 16.42
  • ^ a b c d Sheehan, Richard J. (June 15, 2000). "Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_193. ISBN 978-3527306732.
  • ^ a b Haynes, p. 16.29
  • ^ "Polybutylene Terephthalate (PBT) Material Guide & Properties Info". omnexus.specialchem.com. Archived from the original on 2023-11-24. Retrieved 2023-11-24.
  • ^ Cailliot, Amédée (1847). "Études sur l'essence de térébenthine" [Studies of the essence of turpentine]. Annales de Chimie et de Physique. Série 3. 21: 27–40. Terephthalic acid is named on p. 29:『Je désignerai le premier de ces acides, celui qui est insoluble, sous le nom d'acide téréphtalique.』(I will designate the first of these acids, which is insoluble, by the name of terephthalic acid.)
  • ^ a b c d e Tomás, Rogério A. F.; Bordado, João C. M.; Gomes, João F. P. (2013). "p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development". Chemical Reviews. 113 (10): 7421–69. doi:10.1021/cr300298j. PMID 23767849.
  • ^ Wang, Qinbo; Cheng, Youwei; Wang, Lijun; Li, Xi (2007). "Semicontinuous Studies on the Reaction Mechanism and Kinetics for the Liquid-Phase Oxidation of p-Xylene to Terephthalic Acid". Industrial & Engineering Chemistry Research. 46 (26): 8980–8992. doi:10.1021/ie0615584.
  • ^ Xiao, Y.; Luo, W.-P.; Zhang, X.-Y.; et al. (2010). "Aerobic Oxidation of p-Toluic Acid to Terephthalic Acid over T(p-Cl)PPMnCl/Co(OAc)2 Under Moderate Conditions". Catalysis Letters. 134 (1–2): 155–161. doi:10.1007/s10562-009-0227-1. S2CID 95855968.
  • ^ a b Zuo, Xiaobin; Subramaniam, Bala; Busch, Daryle H. (2008). "Liquid-Phase Oxidation of Toluene and p-Toluic Acid under Mild Conditions: Synergistic Effects of Cobalt, Zirconium, Ketones, and Carbon Dioxide". Industrial & Engineering Chemistry Research. 47 (3): 546–552. doi:10.1021/ie070896h.
  • ^ a b Zuo, Xiaobin; Niu, Fenghui; Snavely, Kirk; et al. (2010). "Liquid Phase Oxidation of p-Xylene to Terephthalic Acid at Medium-high Temperatures: Multiple Benefits of CO2-expanded Liquids". Industrial & Engineering Chemistry Research. 12 (2): 260–267. doi:10.1039/B920262E. hdl:1808/18532.
  • ^ Pérez, Eduardo; Fraga Dubreuil, Joan; García Verdugo, Eduardo; et al. (2011). "Selective Aerobic Oxidation of para-Xylene in Sub- and Supercritical Water. Part 1. Comparison with Ortho-xylene and the Role of the Catalyst". Green Chemistry. 13 (12): 2389–2396. doi:10.1039/C1GC15137A.
  • ^ Ogata, Yoshiro; Tsuchida, Masaru; Muramoto, Akihiko (1957). "The Preparation of Terephthalic Acid from Phthalic or Benzoic Acid". Journal of the American Chemical Society. 79 (22): 6005–6008. doi:10.1021/ja01579a043.
  • ^ Ogata, Yoshiro; Hojo, Masaru; Morikawa, Masanobu (1960). "Further Studies on the Preparation of Terephthalic Acid from Phthalic or Benzoic Acid". Journal of Organic Chemistry. 25 (12): 2082–2087. doi:10.1021/jo01082a003.
  • ^ Ashford's Dictionary of Industrial Chemicals (3rd ed.). Saltash, UK: Wavelength. 2011. p. 8805. ISBN 978-0952267430.
  • ^ "GTDB – Genome GCF_001010305.1". gtdb.ecogenomic.org.
  • ^ Kincannon, William M.; Zahn, Michael; Clare, Rita; et al. (29 March 2022). "Biochemical and structural characterization of an aromatic ring–hydroxylating dioxygenase for terephthalic acid catabolism". Proceedings of the National Academy of Sciences. 119 (13): e2121426119. Bibcode:2022PNAS..11921426K. doi:10.1073/pnas.2121426119. PMC 9060491. PMID 35312352.
  • Cited sources

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Terephthalic_acid&oldid=1231803392"

    Categories: 
    Dicarboxylic acids
    Carboxylic acid-based monomers
    Benzoic acids
    Commodity chemicals
    Substances discovered in the 19th century
    Hidden categories: 
    ECHA InfoCard ID from Wikidata
    Articles with changed FDA identifier
    Chembox having GHS data
    Chemical articles having a data page
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
     



    This page was last edited on 30 June 2024, at 10:21 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki