Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Time ordering  





3 See also  





4 References  














Path-ordering






Deutsch
Italiano
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Time ordering)

Intheoretical physics, path-ordering is the procedure (or a meta-operator ) that orders a product of operators according to the value of a chosen parameter:

Here p is a permutation that orders the parameters by value:

For example:

Examples[edit]

If an operator is not simply expressed as a product, but as a function of another operator, we must first perform a Taylor expansion of this function. This is the case of the Wilson loop, which is defined as a path-ordered exponential to guarantee that the Wilson loop encodes the holonomy of the gauge connection. The parameter σ that determines the ordering is a parameter describing the contour, and because the contour is closed, the Wilson loop must be defined as a trace in order to be gauge-invariant.

Time ordering[edit]

Inquantum field theory it is useful to take the time-ordered product of operators. This operation is denoted by . (Although is often called the "time-ordering operator", strictly speaking it is neither an operator on states nor a superoperator on operators.)

For two operators A(x) and B(y) that depend on spacetime locations x and y we define:

Here and denote the invariant scalar time-coordinates of the points x and y.[1]

Explicitly we have

where denotes the Heaviside step function and the depends on if the operators are bosonicorfermionic in nature. If bosonic, then the + sign is always chosen, if fermionic then the sign will depend on the number of operator interchanges necessary to achieve the proper time ordering. Note that the statistical factors do not enter here.

Since the operators depend on their location in spacetime (i.e. not just time) this time-ordering operation is only coordinate independent if operators at spacelike separated points commute. This is why it is necessary to use rather than , since usually indicates the coordinate dependent time-like index of the spacetime point. Note that the time-ordering is usually written with the time argument increasing from right to left.

In general, for the product of n field operators A1(t1), …, An(tn) the time-ordered product of operators are defined as follows:

where the sum runs all over p's and over the symmetric groupofn degree permutations and

The S-matrixinquantum field theory is an example of a time-ordered product. The S-matrix, transforming the state at t = −∞ to a state at t = +∞, can also be thought of as a kind of "holonomy", analogous to the Wilson loop. We obtain a time-ordered expression because of the following reason:

We start with this simple formula for the exponential

Now consider the discretized evolution operator

where is the evolution operator over an infinitesimal time interval . The higher order terms can be neglected in the limit . The operator is defined by

Note that the evolution operators over the "past" time intervals appears on the right side of the product. We see that the formula is analogous to the identity above satisfied by the exponential, and we may write

The only subtlety we had to include was the time-ordering operator because the factors in the product defining S above were time-ordered, too (and operators do not commute in general) and the operator ensures that this ordering will be preserved.

See also[edit]

References[edit]

  1. ^ Steven Weinberg, The Quantum Theory of Fields, Vol. 3, Cambridge University Press, 1995, ISBN 0-521-55001-7, p. 143.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Path-ordering&oldid=1225813665#Time_ordering"

Categories: 
Quantum field theory
Gauge theories
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles needing additional references from September 2016
All articles needing additional references
 



This page was last edited on 26 May 2024, at 21:34 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki