Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Trivial and nontrivial solutions  





2 In mathematical reasoning  



2.1  Trivial proofs  







3 Humor  





4 Examples  





5 See also  





6 References  





7 External links  














Triviality (mathematics)







Català
Чӑвашла
Čeština
Español
فارسی
Français

Bahasa Indonesia
Italiano
עברית
Nederlands

Polski
Português
Русский
Slovenščina
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Trivial (mathematics))

Inmathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or an object which possesses a simple structure (e.g., groups, topological spaces).[1][2] The noun triviality usually refers to a simple technical aspect of some proof or definition. The origin of the term in mathematical language comes from the medieval trivium curriculum, which distinguishes from the more difficult quadrivium curriculum.[1][3] The opposite of trivial is nontrivial, which is commonly used to indicate that an example or a solution is not simple, or that a statement or a theorem is not easy to prove.[2]

The judgement of whether a situation under consideration is trivial or not depends on who considers it since the situation is obviously true for someone who has sufficient knowledge or experience of it while to someone who has never seen this, it may be even hard to be understood so not trivial at all. And there can be an argument about how quickly and easily a problem should be recognized for the problem to be treated as trivial. So, triviality is not a universally agreed property in mathematics and logic.

Trivial and nontrivial solutions[edit]

In mathematics, the term "trivial" is often used to refer to objects (e.g., groups, topological spaces) with a very simple structure. These include, among others:

"Trivial" can also be used to describe solutions to an equation that have a very simple structure, but for the sake of completeness cannot be omitted. These solutions are called the trivial solutions. For example, consider the differential equation

where is a function whose derivativeis. The trivial solution is the zero function

while a nontrivial solution is the exponential function

The differential equation with boundary conditions is important in mathematics and physics, as it could be used to describe a particle in a box in quantum mechanics, or a standing wave on a string. It always includes the solution , which is considered obvious and hence is called the "trivial" solution. In some cases, there may be other solutions (sinusoids), which are called "nontrivial" solutions.[4]

Similarly, mathematicians often describe Fermat's last theorem as asserting that there are no nontrivial integer solutions to the equation , where n is greater than 2. Clearly, there are some solutions to the equation. For example, is a solution for any n, but such solutions are obvious and obtainable with little effort, and hence "trivial".

In mathematical reasoning[edit]

Trivial may also refer to any easy case of a proof, which for the sake of completeness cannot be ignored. For instance, proofs by mathematical induction have two parts: the "base case" which shows that the theorem is true for a particular initial value (such as n = 0 or n = 1), and the inductive step which shows that if the theorem is true for a certain value of n, then it is also true for the value n + 1. The base case is often trivial and is identified as such, although there are situations where the base case is difficult but the inductive step is trivial. Similarly, one might want to prove that some property is possessed by all the members of a certain set. The main part of the proof will consider the case of a nonempty set, and examine the members in detail; in the case where the set is empty, the property is trivially possessed by all the members of the empty set, since there are none (see vacuous truth for more).

The judgement of whether a situation under consideration is trivial or not depends on who considers it since the situation is obviously true for someone who has sufficient knowledge or experience of it while to someone who has never seen this, it may be even hard to be understood so not trivial at all. And there can be an argument about how quickly and easily a problem should be recognized for the problem to be treated as trivial. The following examples show the subjectivity and ambiguity of the triviality judgement.

Triviality also depends on context. A proof in functional analysis would probably, given a number, trivially assume the existence of a larger number. However, when proving basic results about the natural numbers in elementary number theory, the proof may very well hinge on the remark that any natural number has a successor – a statement which should itself be proved or be taken as an axiom so is not trivial (for more, see Peano's axioms).

Trivial proofs[edit]

In some texts, a trivial proof refers to a statement involving a material implication PQ, where the consequent Q, is always true.[5] Here, the proof follows immediately by virtue of the definition of material implication in which as the implication is true regardless of the truth value of the antecedent P if the consequent is fixed as true.[5]

A related concept is a vacuous truth, where the antecedent P in a material implication PQ is false.[5] In this case, the implication is always true regardless of the truth value of the consequent Q – again by virtue of the definition of material implication.[5]

Humor[edit]

Examples[edit]

See also[edit]

References[edit]

  1. ^ a b c Weisstein, Eric W. "Trivial". mathworld.wolfram.com. Retrieved 2019-12-14.
  • ^ a b "Mathwords: Trivial". www.mathwords.com. Retrieved 2019-12-14.
  • ^ Ayto, John (1990). Dictionary of word origins. University of Texas Press. p. 542. ISBN 1-55970-214-1. OCLC 33022699.
  • ^ Zachmanoglou, E. C.; Thoe, Dale W. (1986). Introduction to Partial Differential Equations with Applications. p. 309. ISBN 9780486652511.
  • ^ a b c d Chartrand, Gary; Polimeni, Albert D.; Zhang, Ping (2008). Mathematical proofs: a transition to advanced mathematics (2nd ed.). Boston: Pearson/Addison Wesley. p. 68. ISBN 978-0-3-2139053-0.
  • ^ Yan, Song Y. (2002). Number Theory for Computing (2nd, illustrated ed.). Berlin: Springer. p. 250. ISBN 3-540-43072-5.
  • ^ Jeffrey, Alan (2004). Mathematics for Engineers and Scientists (Sixth ed.). CRC Press. p. 502. ISBN 1-58488-488-6.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Triviality_(mathematics)&oldid=1231341665"

    Category: 
    Mathematical terminology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from January 2023
    All articles needing additional references
     



    This page was last edited on 27 June 2024, at 20:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki