Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Background  





2 Function in mammals  





3 Mutations  





4 Regulation in cell differentiation  





5 Tsix in humans  





6 See also  





7 References  





8 External links  














Tsix







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Tsix (gene))

TSIX
Identifiers
AliasesTSIX, LINC00013, NCRNA00013, XIST-AS, XIST-AS1, XISTAS, Tsix, TSIX transcript, XIST antisense RNA
External IDsOMIM: 300181; GeneCards: TSIX; OMA:TSIX - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)Chr X: 73.79 – 73.83 Mbn/a
PubMed search[2]n/a
Wikidata
View/Edit Human
Simplified flowchart of Tsix's role in Xist gene function

Tsix is a non-coding RNA gene that is antisense to the Xist RNA. Tsix binds Xist during X chromosome inactivation. The name Tsix comes from the reverse of Xist, which stands for X-inactive specific transcript.[3]

Background[edit]

Female mammals have two X chromosomes and males have one X and one Y chromosome. The X chromosome has many active genes. This leads to dosage compensation problems: the two X chromosomes in the female will create twice as many gene products as the one X in the male. To mitigate this, one of the X chromosomes is inactivated in females, so that each sex only has one set of X chromosome genes. The inactive X chromosome in cells of females is visible as a Barr body under the microscope. Males do not have Barr bodies, as they only have one X chromosome.[3]

Xist is only expressed from the future inactive X chromosome in females and is able to "coat" the chromosome from which it was produced. Many copies of Xist RNA bind the future inactivated X chromosome. Tsix prevents the accumulation of Xist on the future active female X chromosome to maintain the active euchromatin state of the chosen chromosome.[3][4]

Function in mammals[edit]

In the extra-embryonic lineage in mice and some other mammals, all female individuals have two X chromosomes. However, during embryonic development, an X chromosome is deactivated, while the other X chromosome is left untouched, in a process called imprinted X-inactivation. Xist inactivates an X chromosome at random in female mice by condensing the chromatin, via histone methylation among other mechanisms that are currently being studied. This inactivation happens at random in each individual cell, allowing for a different X chromosome to be inactivated in each cell. Female mammals are therefore called genetic mosaics, for having two different X chromosomes expressed throughout their body. Tsix binds complementary Xist RNA and renders it non-functional. After binding it, Xist is made inactive through dicer.[4] Thus, Xist does not condense chromatin on the other X chromosome, letting it remain active. This does not occur on the other chromosome, and Xist proceeds to inactivate that chromosome.[5] Tsix also functions to silence transcription of Xist through epigenetic regulation.[4]

Tsix and Xist regulate X chromosome protein production in female mice to prevent early embryonic mortality.[6] X inactivation allows for equal dosage of X-linked genes for both males and females by inactivating the extra X chromosome in the females.[7] Mutation of the maternal Tsix gene can cause over accumulation of Xist on both X chromosomes, silencing both X chromosomes in females and the single X chromosome in male. This can cause early mortality. However, if the paternal Tsix allele is active, it can rescue female embryos from the over-accumulation of Xist.[8]

Mutations[edit]

When one allele of Tsix in mice is null, the inactivation is skewed toward the mutant X chromosome. This is due to an accumulation of Xist that is not countered by Tsix, and causes the mutant chromosome to be inactivated. When both alleles of Tsix are null (homozygous mutant), the results are low fertility, lower proportion of female births and a reversion to random X inactivation rather than gene imprinting.[9]

Regulation in cell differentiation[edit]

In development, X chromosome inactivation is a part of cellular differentiation. This is accomplished by normal Xist function. To confer pluripotency in an embryonic stem cell, factors inhibit Xist transcription. These factors also upregulate transcription of Tsix, which serves to inhibit Xist further. This cell is then able to remain pluripotent as X inactivation is not accomplished.[10]

The marker Rex1, as well as other members of the pluripotency network, are recruited to the Tsix promoter and transcription elongation of Tsix occurs.[10] Along with Tsix and other proteins, factor PRDM14 has been shown to be necessary for the return to pluripotency. Assisted by Tsix, PRDM14 can associate with Xist and remove the inactivation of an X chromosome.[11]

Tsix in humans[edit]

X chromosome inactivation is random in human females, and imprinting does not occur. The deletion of a CpG island, a site involved in epigenetic regulation, in the human Tsix gene prevents Tsix from imprinting on the X chromosomes. Instead, the human Tsix chromosome is coexpressed with the human Xist gene on the inactivated X chromosome, indicating that it does not play an important role in random X chromosome inactivation.[12]Anautosome may be a more likely candidate for regulating this process in humans. The presence of Tsix in humans may be an evolutionary vestige, a sequence that no longer has a function in humans. Alternately, it may be necessary to study cells closer to the X inactivation stage rather than older cells in order to accurately locate Tsix expression and function.[5]

See also[edit]

References[edit]

  • ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  • ^ a b c Lee JT, Davidow LS, Warshawsky D (1999). "Tsix, a gene antisense to Xist at the X-inactivation centre". Nat. Genet. 21 (4): 400–4. doi:10.1038/7734. PMID 10192391. S2CID 30636065.
  • ^ a b c Online Mendelian Inheritance in Man (OMIM): 300181
  • ^ a b Cobb K (August 17, 2002). "Not a turn-on". Science News. 162 (7): 100–101. doi:10.2307/4013787. JSTOR 4013787.
  • ^ "Tsix MGI Mouse Gene Detail - MGI:1336196 - X (inactive)-specific transcript, opposite strand". Mouse Genome Informatics. The Jackson Laboratory. 20 March 2013.
  • ^ Stavropoulos N, Lu N, Lee JT (2001). "A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice". Proc. Natl. Acad. Sci. U.S.A. 98 (18): 10232–7. Bibcode:2001PNAS...9810232S. doi:10.1073/pnas.171243598. PMC 56944. PMID 11481444.
  • ^ Sado T, Wang Z, Sasaki H, Li E (2001). "Regulation of imprinted X-chromosome inactivation in mice by Tsix". Development. 128 (8): 1275–86. doi:10.1242/dev.128.8.1275. PMID 11262229.
  • ^ Lee JT (2002). "Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation". Nat. Genet. 32 (1): 195–200. doi:10.1038/ng939. PMID 12145659. S2CID 22497302.
  • ^ a b Navarro P, Oldfield A, Legoupi J, Festuccia N, Dubois A, Attia M, Schoorlemmer J, Rougeulle C, Chambers I, Avner P (2010). "Molecular coupling of Tsix regulation and pluripotency". Nature. 468 (7322): 457–60. Bibcode:2010Natur.468..457N. doi:10.1038/nature09496. PMID 21085182. S2CID 205222742.
  • ^ Payer B, Rosenberg M, Yamaji M, Yabuta Y, Koyanagi-Aoi M, Hayashi K, Yamanaka S, Saitou M, Lee JT (2013). "Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming". Mol. Cell. 52 (6): 805–18. doi:10.1016/j.molcel.2013.10.023. PMC 3950835. PMID 24268575.
  • ^ Migeon BR (2003). "Is Tsix repression of Xist specific to mouse?". Nat. Genet. 33 (3): 337, author reply 337–8. doi:10.1038/ng0303-337a. PMID 12610550. S2CID 9658810.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tsix&oldid=1165986656"

    Categories: 
    Genes on human chromosome X
    Genes mutated in mice
    Molecular genetics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 18 July 2023, at 17:48 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki