Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Approximation formulas  



1.1  Accuracy of different formulations  







2 Numerical approximations  





3 Graphical pressure dependency on temperature  





4 See also  





5 References  





6 Further reading  





7 External links  














Vapour pressure of water






Afrikaans

Català
Dansk
فارسی
Français

Lombard
Македонски
Română
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Vapor pressure of water)

Vapor pressure of water (0–100 °C)[1]
T, °C T, °F P, kPa P, torr P, atm
0 32 0.6113 4.5851 0.0060
5 41 0.8726 6.5450 0.0086
10 50 1.2281 9.2115 0.0121
15 59 1.7056 12.7931 0.0168
20 68 2.3388 17.5424 0.0231
25 77 3.1690 23.7695 0.0313
30 86 4.2455 31.8439 0.0419
35 95 5.6267 42.2037 0.0555
40 104 7.3814 55.3651 0.0728
45 113 9.5898 71.9294 0.0946
50 122 12.3440 92.5876 0.1218
55 131 15.7520 118.1497 0.1555
60 140 19.9320 149.5023 0.1967
65 149 25.0220 187.6804 0.2469
70 158 31.1760 233.8392 0.3077
75 167 38.5630 289.2463 0.3806
80 176 47.3730 355.3267 0.4675
85 185 57.8150 433.6482 0.5706
90 194 70.1170 525.9208 0.6920
95 203 84.5290 634.0196 0.8342
100 212 101.3200 759.9625 1.0000

The vapor pressure of water is the pressure exerted by molecules of water vapor in gaseous form (whether pure or in a mixture with other gases such as air). The saturation vapor pressure is the pressure at which water vaporisin thermodynamic equilibrium with its condensed state. At pressures higher than vapor pressure, water would condense, while at lower pressures it would evaporateorsublimate. The saturation vapor pressure of water increases with increasing temperature and can be determined with the Clausius–Clapeyron relation. The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable.

Calculations of the (saturation) vapor pressure of water are commonly used in meteorology. The temperature-vapor pressure relation inversely describes the relation between the boiling point of water and the pressure. This is relevant to both pressure cooking and cooking at high altitudes. An understanding of vapor pressure is also relevant in explaining high altitude breathing and cavitation.

Approximation formulas

[edit]

There are many published approximations for calculating saturated vapor pressure over water and over ice. Some of these are (in approximate order of increasing accuracy):

Name Formula Description
"Eq. 1" (August equation) P is the vapour pressure in mmHg and T is the temperature in kelvins. Constants are unattributed.
The Antoine equation T is in degrees Celsius (°C) and the vapour pressure P is in mmHg. The (unattributed) constants are given as
A B C Tmin, °C Tmax, °C
8.07131 1730.63 233.426 1 99
8.14019 1810.94 244.485 100 374
August-Roche-Magnus (or Magnus-Tetens or Magnus) equation Temperature T is in °C and vapour pressure P is in kilopascals (kPa). The coefficients given here correspond to equation 21 in Alduchov and Eskridge (1996).[2]

See also discussion of Clausius-Clapeyron approximations used in meteorology and climatology.

Tetens equation T is in °C and  P is in kPa
The Buck equation. T is in °C and P is in kPa.
The Goff-Gratch (1946) equation.[3] (See article; too long)

Accuracy of different formulations

[edit]

Here is a comparison of the accuracies of these different explicit formulations, showing saturation vapor pressures for liquid water in kPa, calculated at six temperatures with their percentage error from the table values of Lide (2005):

T (°C) P (Lide Table) P (Eq 1) P (Antoine) P (Magnus) P (Tetens) P (Buck) P (Goff-Gratch)
0 0.6113 0.6593 (+7.85%) 0.6056 (-0.93%) 0.6109 (-0.06%) 0.6108 (-0.09%) 0.6112 (-0.01%) 0.6089 (-0.40%)
20 2.3388 2.3755 (+1.57%) 2.3296 (-0.39%) 2.3334 (-0.23%) 2.3382 (+0.05%) 2.3383 (-0.02%) 2.3355 (-0.14%)
35 5.6267 5.5696 (-1.01%) 5.6090 (-0.31%) 5.6176 (-0.16%) 5.6225 (+0.04%) 5.6268 (+0.00%) 5.6221 (-0.08%)
50 12.344 12.065 (-2.26%) 12.306 (-0.31%) 12.361 (+0.13%) 12.336 (+0.08%) 12.349 (+0.04%) 12.338 (-0.05%)
75 38.563 37.738 (-2.14%) 38.463 (-0.26%) 39.000 (+1.13%) 38.646 (+0.40%) 38.595 (+0.08%) 38.555 (-0.02%)
100 101.32 101.31 (-0.01%) 101.34 (+0.02%) 104.077 (+2.72%) 102.21 (+1.10%) 101.31 (-0.01%) 101.32 (0.00%)

A more detailed discussion of accuracy and considerations of the inaccuracy in temperature measurements is presented in Alduchov and Eskridge (1996). The analysis here shows the simple unattributed formula and the Antoine equation are reasonably accurate at 100 °C, but quite poor for lower temperatures above freezing. Tetens is much more accurate over the range from 0 to 50 °C and very competitive at 75 °C, but Antoine's is superior at 75 °C and above. The unattributed formula must have zero error at around 26 °C, but is of very poor accuracy outside a narrow range. Tetens' equations are generally much more accurate and arguably more straightforward for use at everyday temperatures (e.g., in meteorology). As expected,[clarification needed] Buck's equation for T > 0 °C is significantly more accurate than Tetens, and its superiority increases markedly above 50 °C, though it is more complicated to use. The Buck equation is even superior to the more complex Goff-Gratch equation over the range needed for practical meteorology.

Numerical approximations

[edit]

For serious computation, Lowe (1977)[4] developed two pairs of equations for temperatures above and below freezing, with different levels of accuracy. They are all very accurate (compared to Clausius-Clapeyron and the Goff-Gratch) but use nested polynomials for very efficient computation. However, there are more recent reviews of possibly superior formulations, notably Wexler (1976, 1977),[5][6] reported by Flatau et al. (1992).[7]

Examples of modern use of these formulae can additionally be found in NASA's GISS Model-E and Seinfeld and Pandis (2006). The former is an extremely simple Antoine equation, while the latter is a polynomial.[8]

In 2018 a new physics-inspired approximation formula was devised and tested by Huang [9] who also reviews other recent attempts.

Graphical pressure dependency on temperature

[edit]
Vapour pressure diagrams of water; data taken from Dortmund Data Bank. Graphics shows triple point, critical point and boiling point of water.

See also

[edit]

References

[edit]
  1. ^ Lide, David R., ed. (2004). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. pp. 6–8. ISBN 978-0-8493-0485-9.
  • ^ Alduchov, O.A.; Eskridge, R.E. (1996). "Improved Magnus form approximation of saturation vapor pressure". Journal of Applied Meteorology. 35 (4): 601–9. Bibcode:1996JApMe..35..601A. doi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.
  • ^ Goff, J.A., and Gratch, S. 1946. Low-pressure properties of water from −160 to 212 °F. In Transactions of the American Society of Heating and Ventilating Engineers, pp 95–122, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.
  • ^ Lowe, P.R. (1977). "An approximating polynomial for the computation of saturation vapor pressure". Journal of Applied Meteorology. 16 (1): 100–4. Bibcode:1977JApMe..16..100L. doi:10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2.
  • ^ Wexler, A. (1976). "Vapor pressure formulation for water in range 0 to 100°C. A revision". Journal of Research of the National Bureau of Standards Section A. 80A (5–6): 775–785. doi:10.6028/jres.080a.071. PMC 5312760. PMID 32196299.
  • ^ Wexler, A. (1977). "Vapor pressure formulation for ice". Journal of Research of the National Bureau of Standards Section A. 81A (1): 5–20. doi:10.6028/jres.081a.003. PMC 5295832.
  • ^ Flatau, P.J.; Walko, R.L.; Cotton, W.R. (1992). "Polynomial fits to saturation vapor pressure". Journal of Applied Meteorology. 31 (12): 1507–13. Bibcode:1992JApMe..31.1507F. doi:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.
  • ^ Clemenzi, Robert. "Water Vapor - Formulas". mc-computing.com.
  • ^ Huang, Jianhua (2018). "A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice". Journal of Applied Meteorology and Climatology. 57 (6): 1265–72.
  • Further reading

    [edit]
  • Garnett, Pat; Anderton, John D; Garnett, Pamela J (1997). Chemistry Laboratory Manual For Senior Secondary School. Longman. ISBN 978-0-582-86764-2.
  • Murphy, D.M.; Koop, T. (2005). "Review of the vapour pressures of ice and supercooled water for atmospheric applications". Quarterly Journal of the Royal Meteorological Society. 131 (608): 1539–65. Bibcode:2005QJRMS.131.1539M. doi:10.1256/qj.04.94. S2CID 122365938.
  • Speight, James G. (2004). Lange's Handbook of Chemistry (16th ed.). McGraw-Hil. ISBN 978-0071432207.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Vapour_pressure_of_water&oldid=1209505051"

    Categories: 
    Thermodynamic properties
    Atmospheric thermodynamics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from August 2023
     



    This page was last edited on 22 February 2024, at 06:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki