Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Example  





2 "Definition" as anticipation of definition  





3 Independence of representative  



3.1  Functions with one argument  





3.2  Operations  







4 Well-defined notation  





5 Other uses of the term  





6 See also  





7 References  



7.1  Notes  





7.2  Sources  
















Well-defined expression






العربية
Deutsch
Español
فارسی

ि
עברית
Nederlands

Português
Română
Svenska
Türkçe


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Well defined)

Inmathematics, a well-defined expressionorunambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well defined, ill definedorambiguous.[1] A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if takes real numbers as input, and if does not equal then is not well defined (and thus not a function).[2] The term well-defined can also be used to indicate that a logical expression is unambiguous or uncontradictory.

A function that is not well defined is not the same as a function that is undefined. For example, if , then even though is undefined, this does not mean that the function is not well defined; rather, 0 is not in the domainof.

Example[edit]

Let be sets, let and "define" asif and if.

Then is well defined if . For example, if and , then would be well defined and equal to .

However, if , then would not be well defined because is "ambiguous" for . For example, if and , then would have to be both 0 and 1, which makes it ambiguous. As a result, the latter is not well defined and thus not a function.

"Definition" as anticipation of definition[edit]

In order to avoid the quotation marks around "define" in the previous simple example, the "definition" of could be broken down into two logical steps:

  1. The definition of the binary relation. In the example:
    (which so far is nothing but a certain subset of the Cartesian product .)
  2. The assertion. The binary relation is a function; in the example:

While the definition in step 1 is formulated with the freedom of any definition and is certainly effective (without the need to classify it as "well defined"), the assertion in step 2 has to be proved. That is, is a function if and only if , in which case – as a function – is well defined. On the other hand, if , then for an , we would have that and , which makes the binary relation not functional (as defined in Binary relation#Special types of binary relations) and thus not well defined as a function. Colloquially, the "function" is also called ambiguous at point (although there is per definitionem never an "ambiguous function"), and the original "definition" is pointless.

Despite these subtle logical problems, it is quite common to use the term definition (without apostrophes) for "definitions" of this kind, for three reasons:

  1. It provides a handy shorthand of the two-step approach.
  2. The relevant mathematical reasoning (i.e., step 2) is the same in both cases.
  3. In mathematical texts, the assertion is "up to 100%" true.

Independence of representative[edit]

Questions regarding the well-definedness of a function often arise when the defining equation of a function refers not only to the arguments themselves, but also to elements of the arguments, serving as representatives. This is sometimes unavoidable when the arguments are cosets and when the equation refers to coset representatives. The result of a function application must then not depend on the choice of representative.

Functions with one argument[edit]

For example, consider the following function:

where and are the integers modulo m and denotes the congruence classofn mod m.

N.B.: is a reference to the element , and is the argument of .

The function is well defined, because:

As a counter example, the converse definition:

does not lead to a well-defined function, since e.g. equals in, but the first would be mapped by to, while the second would be mapped to , and and are unequal in .

Operations[edit]

In particular, the term well-defined is used with respect to (binary) operations on cosets. In this case, one can view the operation as a function of two variables, and the property of being well-defined is the same as that for a function. For example, addition on the integers modulo some n can be defined naturally in terms of integer addition.

The fact that this is well-defined follows from the fact that we can write any representative of as, where is an integer. Therefore,

similar holds for any representative of , thereby making the same, irrespective of the choice of representative.

Well-defined notation[edit]

For real numbers, the product is unambiguous because ; hence the notation is said to be well defined.[1] This property, also known as associativity of multiplication, guarantees the result does not depend on the sequence of multiplications; therefore, a specification of the sequence can be omitted. The subtraction operation is non-associative; despite that, there is a convention that is shorthand for , thus it is considered "well-defined". On the other hand, Division is non-associative, and in the case of , parenthesization conventions are not well established; therefore, this expression is often considered ill-defined.

Unlike with functions, notational ambiguities can be overcome by means of additional definitions (e.g., rules of precedence, associativity of the operator). For example, in the programming language C, the operator - for subtraction is left-to-right-associative, which means that a-b-c is defined as (a-b)-c, and the operator = for assignment is right-to-left-associative, which means that a=b=c is defined as a=(b=c).[3] In the programming language APL there is only one rule: from right to left – but parentheses first.

Other uses of the term[edit]

A solution to a partial differential equation is said to be well-defined if it is continuously determined by boundary conditions as those boundary conditions are changed.[1]

See also[edit]

References[edit]

Notes[edit]

  1. ^ a b c Weisstein, Eric W. "Well-Defined". From MathWorld – A Wolfram Web Resource. Retrieved 2 January 2013.
  • ^ Joseph J. Rotman, The Theory of Groups: an Introduction, p. 287 "... a function is "single-valued," or, as we prefer to say ... a function is well defined.", Allyn and Bacon, 1965.
  • ^ "Operator Precedence and Associativity in C". GeeksforGeeks. 2014-02-07. Retrieved 2019-10-18.
  • Sources[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Well-defined_expression&oldid=1222227818"

    Categories: 
    Definition
    Mathematical terminology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 4 May 2024, at 18:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki