Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  





2 Properties  



2.1  Convergent series  





2.2  Asymptotic (divergent) series  



2.2.1  Asymptotics beyond all orders  







2.3  Exponential and logarithmic behavior: bracketing  





2.4  Definition by Ein  





2.5  Relation with other functions  





2.6  Generalization  





2.7  Derivatives  





2.8  Exponential integral of imaginary argument  





2.9  Approximations  







3 Inverse function of the Exponential Integral  





4 Applications  





5 See also  





6 Notes  





7 References  





8 External links  














Exponential integral






العربية
Català
Чӑвашла
Deutsch
Español
Esperanto
Français

Italiano
Nederlands

Polski
Português
Русский
Slovenščina
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Well function)

Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the exponential integral Ei is a special function on the complex plane.

It is defined as one particular definite integral of the ratio between an exponential function and its argument.

Definitions[edit]

For real non-zero values of x, the exponential integral Ei(x) is defined as

The Risch algorithm shows that Ei is not an elementary function. The definition above can be used for positive values of x, but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.

For complex values of the argument, the definition becomes ambiguous due to branch points at 0 and .[1] Instead of Ei, the following notation is used,[2]

Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

For positive values of x, we have .

In general, a branch cut is taken on the negative real axis and E1 can be defined by analytic continuation elsewhere on the complex plane.

For positive values of the real part of , this can be written[3]

The behaviour of E1 near the branch cut can be seen by the following relation:[4]

Properties[edit]

Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.

Convergent series[edit]

Plot of function (top) and function (bottom).

For real or complex arguments off the negative real axis, can be expressed as[5]

where is the Euler–Mascheroni constant. The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.

This formula can be used to compute with floating point operations for real between 0 and 2.5. For , the result is inaccurate due to cancellation.

A faster converging series was found by Ramanujan:

Asymptotic (divergent) series[edit]

Relative error of the asymptotic approximation for different number of terms in the truncated sum

Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for .[6] However, for positive values of x, there is a divergent series approximation that can be obtained by integrating by parts:[7]

The relative error of the approximation above is plotted on the figure to the right for various values of , the number of terms in the truncated sum ( in red, in pink).

Asymptotics beyond all orders[edit]

Using integration by parts, we can obtain an explicit formula[8]

For any fixed , the absolute value of the error term decreases, then increases. The minimum occurs at , at which point . This bound is said to be "asymptotics beyond all orders".

Exponential and logarithmic behavior: bracketing[edit]

Bracketing of by elementary functions

From the two series suggested in previous subsections, it follows that behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, can be bracketed by elementary functions as follows:[9]

The left-hand side of this inequality is shown in the graph to the left in blue; the central part is shown in black and the right-hand side is shown in red.

Definition by Ein[edit]

Both and can be written more simply using the entire function [10] defined as

(note that this is just the alternating series in the above definition of ). Then we have

Relation with other functions[edit]

Kummer's equation

is usually solved by the confluent hypergeometric functions and But when and that is,

we have

for all z. A second solution is then given by E1(−z). In fact,

with the derivative evaluated at Another connexion with the confluent hypergeometric functions is that E1 is an exponential times the function U(1,1,z):

The exponential integral is closely related to the logarithmic integral function li(x) by the formula

for non-zero real values of .

Generalization[edit]

The exponential integral may also be generalized to

which can be written as a special case of the upper incomplete gamma function:[11]

The generalized form is sometimes called the Misra function[12] , defined as

Many properties of this generalized form can be found in the NIST Digital Library of Mathematical Functions.

Including a logarithm defines the generalized integro-exponential function[13]

The indefinite integral:

is similar in form to the ordinary generating function for , the number of divisorsof:

Derivatives[edit]

The derivatives of the generalised functions can be calculated by means of the formula [14]

Note that the function is easy to evaluate (making this recursion useful), since it is just .[15]

Exponential integral of imaginary argument[edit]

against ; real part black, imaginary part red.

If is imaginary, it has a nonnegative real part, so we can use the formula

to get a relation with the trigonometric integrals and :

The real and imaginary parts of are plotted in the figure to the right with black and red curves.

Approximations[edit]

There have been a number of approximations for the exponential integral function. These include:

Inverse function of the Exponential Integral[edit]

We can express the Inverse function of the exponential integral in power series form:[19]

where is the Ramanujan–Soldner constant and ispolynomial sequence defined by the following recurrence relation:

For , and we have the formula :

Applications[edit]

See also[edit]

Notes[edit]

  1. ^ Abramowitz and Stegun, p. 228
  • ^ Abramowitz and Stegun, p. 228, 5.1.1
  • ^ Abramowitz and Stegun, p. 228, 5.1.4 with n = 1
  • ^ Abramowitz and Stegun, p. 228, 5.1.7
  • ^ Abramowitz and Stegun, p. 229, 5.1.11
  • ^ Bleistein and Handelsman, p. 2
  • ^ Bleistein and Handelsman, p. 3
  • ^ O’Malley, Robert E. (2014), O'Malley, Robert E. (ed.), "Asymptotic Approximations", Historical Developments in Singular Perturbations, Cham: Springer International Publishing, pp. 27–51, doi:10.1007/978-3-319-11924-3_2, ISBN 978-3-319-11924-3, retrieved 2023-05-04
  • ^ Abramowitz and Stegun, p. 229, 5.1.20
  • ^ Abramowitz and Stegun, p. 228, see footnote 3.
  • ^ Abramowitz and Stegun, p. 230, 5.1.45
  • ^ After Misra (1940), p. 178
  • ^ Milgram (1985)
  • ^ Abramowitz and Stegun, p. 230, 5.1.26
  • ^ Abramowitz and Stegun, p. 229, 5.1.24
  • ^ a b Giao, Pham Huy (2003-05-01). "Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution". Ground Water. 41 (3): 387–390. doi:10.1111/j.1745-6584.2003.tb02608.x. ISSN 1745-6584. PMID 12772832. S2CID 31982931.
  • ^ a b Tseng, Peng-Hsiang; Lee, Tien-Chang (1998-02-26). "Numerical evaluation of exponential integral: Theis well function approximation". Journal of Hydrology. 205 (1–2): 38–51. Bibcode:1998JHyd..205...38T. doi:10.1016/S0022-1694(97)00134-0.
  • ^ Barry, D. A; Parlange, J. -Y; Li, L (2000-01-31). "Approximation for the exponential integral (Theis well function)". Journal of Hydrology. 227 (1–4): 287–291. Bibcode:2000JHyd..227..287B. doi:10.1016/S0022-1694(99)00184-5.
  • ^ "Inverse function of the Exponential Integral Ei-1(x)". Mathematics Stack Exchange. Retrieved 2024-04-24.
  • ^ George I. Bell; Samuel Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold Company.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Exponential_integral&oldid=1221157333"

    Categories: 
    Exponentials
    Special functions
    Special hypergeometric functions
    Integrals
    Hidden categories: 
    Use American English from January 2019
    All Wikipedia articles written in American English
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 28 April 2024, at 06:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki