Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Terminology  





2 Properties  





3 Related quantities  



3.1  Mixing ratio  





3.2  Mass concentration  





3.3  Molar concentration  





3.4  Mass percentage  





3.5  Mole fraction  







4 Spatial variation and gradient  





5 See also  





6 References  














Mass fraction (chemistry)






العربية
Català
Deutsch
Eesti
Español
فارسی
Français

Bahasa Indonesia
Italiano
Magyar
Nederlands
Polski
Português
Română
Slovenščina
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Wt%)

Inchemistry, the mass fraction of a substance within a mixture is the ratio (alternatively denoted ) of the mass of that substance to the total mass of the mixture.[1] Expressed as a formula, the mass fraction is:

Because the individual masses of the ingredients of a mixture sum to , their mass fractions sum to unity:

Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.%or% w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size; mole fraction (percentage by moles, mol%) and volume fraction (percentage by volume, vol%) are others.

When the prevalences of interest are those of individual chemical elements, rather than of compounds or other substances, the term mass fraction can also refer to the ratio of the mass of an element to the total mass of a sample. In these contexts an alternative term is mass percent composition. The mass fraction of an element in a compound can be calculated from the compound's empirical formula[2] or its chemical formula.[3]

Terminology[edit]

Percent concentration does not refer to this quantity. This improper name persists, especially in elementary textbooks. In biology, the unit "%" is sometimes (incorrectly) used to denote mass concentration, also called mass/volume percentage. A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL. Percent solutionorpercentage solution are thus terms best reserved for mass percent solutions (m/m, m%, or mass solute/mass total solution after mixing), or volume percent solutions (v/v, v%, or volume solute per volume of total solution after mixing). The very ambiguous terms percent solution and percentage solutions with no other qualifiers continue to occasionally be encountered.

Inthermal engineering, vapor quality is used for the mass fraction of vapor in the steam.

In alloys, especially those of noble metals, the term fineness is used for the mass fraction of the noble metal in the alloy.

Properties[edit]

The mass fraction is independent of temperature until phase change occurs.

Related quantities[edit]

Mixing ratio[edit]

The mixing of two pure components can be expressed introducing the (mass) mixing ratio of them . Then the mass fractions of the components will be

The mass ratio equals the ratio of mass fractions of components:

due to division of both numerator and denominator by the sum of masses of components.

Mass concentration[edit]

The mass fraction of a component in a solution is the ratio of the mass concentration of that component ρi (density of that component in the mixture) to the density of solution .

Molar concentration[edit]

The relation to molar concentration is like that from above substituting the relation between mass and molar concentration:

where is the molar concentration, and is the molar mass of the component .

Mass percentage[edit]

Mass percentage is defined as the mass fraction multiplied by 100.

Mole fraction[edit]

The mole fraction can be calculated using the formula

where is the molar mass of the component , and is the average molar mass of the mixture.

Replacing the expression of the molar-mass products,

Spatial variation and gradient[edit]

In a spatially non-uniform mixture, the mass fraction gradient gives rise to the phenomenon of diffusion.

See also[edit]

References[edit]

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "mass fraction". doi:10.1351/goldbook.M03722
  • ^ Formula from Mass Composition.
  • ^ "How to Calculate Mass Percent Composition". ThoughtCo. Retrieved 2018-01-05.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Mass_fraction_(chemistry)&oldid=1226426837"

    Categories: 
    Combustion
    Dimensionless quantities of chemistry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from May 2021
    All articles needing additional references
     



    This page was last edited on 30 May 2024, at 15:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki