Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Additive identities  





2 Absorbing elements  





3 Zero objects  





4 Zero morphisms  





5 Least elements  





6 Zero module  





7 Zero ideal  





8 Zero matrix  





9 Zero tensor  





10 See also  





11 References  














Zero element






العربية
Català
Deutsch
Eesti
Español
Esperanto

Magyar
Nederlands

Română
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Zero vector)

Inmathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.

Additive identities

[edit]

Anadditive identity is the identity element in an additive groupormonoid. It corresponds to the element 0 such that for all x in the group, 0 + x = x + 0 = x. Some examples of additive identity include:

Absorbing elements

[edit]

Anabsorbing element in a multiplicative semigrouporsemiring generalises the property 0 ⋅ x = 0. Examples include:

Many absorbing elements are also additive identities, including the empty set and the zero function. Another important example is the distinguished element 0 in a fieldorring, which is both the additive identity and the multiplicative absorbing element, and whose principal ideal is the smallest ideal.

Zero objects

[edit]

Azero object in a category is both an initial and terminal object (and so an identity under both coproducts and products). For example, the trivial structure (containing only the identity) is a zero object in categories where morphisms must map identities to identities. Specific examples include:

Zero morphisms

[edit]

Azero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0XY : XY is the zero morphism among morphisms from XtoY, and f : AX and g : YB are arbitrary morphisms, then g ∘ 0XY = 0XB and 0XYf = 0AY.

If a category has a zero object 0, then there are canonical morphisms X0 and 0Y, and composing them gives a zero morphism 0XY : XY. In the category of groups, for example, zero morphisms are morphisms which always return group identities, thus generalising the function z(x) = 0.

Least elements

[edit]

Aleast element in a partially ordered setorlattice may sometimes be called a zero element, and written either as 0 or ⊥.

Zero module

[edit]

Inmathematics, the zero module is the module consisting of only the additive identity for the module's addition function. In the integers, this identity is zero, which gives the name zero module. That the zero module is in fact a module is simple to show; it is closed under addition and multiplication trivially.

Zero ideal

[edit]

Inmathematics, the zero ideal in a ring is the ideal consisting of only the additive identity (orzero element). The fact that this is an ideal follows directly from the definition.

Zero matrix

[edit]

Inmathematics, particularly linear algebra, a zero matrix is a matrix with all its entries being zero. It is alternately denoted by the symbol .[2] Some examples of zero matrices are

The set of m × n matrices with entries in a ring K forms a module . The zero matrix in is the matrix with all entries equal to , where is the additive identity in K.

The zero matrix is the additive identity in . That is, for all :

There is exactly one zero matrix of any given size m × n (with entries from a given ring), so when the context is clear, one often refers to the zero matrix. In a matrix ring, the zero matrix serves the role of both an additive identity and an absorbing element. In general, the zero element of a ring is unique, and typically denoted as 0 without any subscript to indicate the parent ring. Hence the examples above represent zero matrices over any ring.

The zero matrix also represents the linear transformation which sends all vectors to the zero vector.

Zero tensor

[edit]

Inmathematics, the zero tensor is a tensor, of any order, all of whose components are zero. The zero tensor of order 1 is sometimes known as the zero vector.

Taking a tensor product of any tensor with any zero tensor results in another zero tensor. Among tensors of a given type, the zero tensor of that type serves as the additive identity among those tensors.

See also

[edit]

References

[edit]
  1. ^ Nair, M. Thamban; Singh, Arindama (2018). Linear Algebra. Springer. p. 3. doi:10.1007/978-981-13-0926-7. ISBN 978-981-13-0925-0.
  • ^ Lang, Serge (1987). Linear Algebra. Undergraduate Texts in Mathematics. Springer. p. 25. ISBN 9780387964126. We have a zero matrix in which for all . ... We shall write it .

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Zero_element&oldid=1217855781#Additive_identities"

    Categories: 
    0 (number)
    Set index articles
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from August 2020
    All articles needing additional references
    All set index articles
     



    This page was last edited on 8 April 2024, at 08:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki