Accueil  

Au hasard  

À proximité  



Se connecter  



Configuration  



Faire un don  



À propos de Wikipédia  

Avertissements  



Wikipédia





Gradient


opérateur différentiel représentant le champ vectoriel des variations d'une fonction vectorielle à valeurs scalaires
 


Langue  

Suivre  

Modifier  





Enmathématiques et en physique, le gradient d'une fonction est son taux de variation selon la position (au sens large). Par exemple, en météorologie, le gradient de température est le taux de variation de la température selon l'altitude[1] ; on le mesure en °C/hm (c.-à-d. degrés Celsius par cent mètres).

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.

Cet article ne cite pas suffisamment ses sources ().

Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ».

En pratique : Quelles sources sont attendues ? Comment ajouter mes sources ?

Chaque champ scalaire est représenté par un dégradé (blanc = valeur basse, noir = valeur haute). Chaque gradient est un champ vectoriel, représenté par des flèches bleues ; chacune pointe dans la direction où le champ scalaire croît le plus vite.
La fonction de deux variables f(x, y) = xe−(x2 + y2) correspond à la température (bleu = valeur basse = froid, rouge = valeur haute = chaud). Le gradient de f est un champ vectoriel, représenté par les flèches bleues ; chacune pointe dans la direction où la température croît le plus vite.

Pour une fonction , le gradient de f se confond avec la dérivéedef. Pour une fonction , où n est un nombre entier ≥ 2, le gradientdef en un point est un vecteur dont la direction est celle de la variation la plus forte de fauvoisinage de ce point[2]. Cette notion est liée à celle de différentielle pour des fonctions à valeurs réelles : si f est différentiable en a, la différentielle Df(a) est une forme linéaire ; à cette forme linéaire, si l'ensemble de départ E est de dimension finie, on peut associer un vecteur qui est le gradient de fena.

Par exemple, si une fonction est différentiable au point a, alors son gradient est le vecteur, noté à l'aide de l'opérateur nabla :

sont les dérivées partiellesdef au point a par rapport aux variables x, y, z respectivement. La variation de f au voisinage de a pour une petite variation est :

À chaque point où f est différentiable, on peut définir un vecteur ; la famille de ces vecteurs forme un champ de vecteurs. Ce champ s'appelle aussi gradient de la fonction f et se note C'est une fonction définie sur l'ensemble des points de Ef est différentiable, et à valeurs dans E.

Le gradient permet d'approcher les fonctions de plusieurs variables par des formes linéaires. Il se révèle utile en physique, mais aussi en géométrie pour déterminer les normales aux lignes de niveaux ou aux isosurfaces.

Motivation

modifier

Enphysique et en analyse vectorielle, le gradient est un vecteur indiquant comment une grandeur physique varie dans l'espace[a]. Le gradient est d'une importance capitale en physique, qui l'employa avant les autres disciplines. En théorie des variations, il est aussi fondamental dans le domaine de l'optimisation ou de la résolution d'équations aux dérivées partielles.

Ensciences de la Terre, le gradient est utilisé pour la variation dans toutes les directions d'un paramètre de la lithosphère, de l'hydrosphère, de l'atmosphère, ou de la biosphère. Cependant, le terme est souvent employé pour la composante dans une seule direction, comme dans le cas de la dérivée verticale d'une grandeur physique, c.-à-d. sa dérivée par rapport à la coordonnée   (altitude ou profondeur). Par exemple, le gradient géothermique est la dérivée   fois  , où   est la températureet unvecteur unitaire vertical.

Définition

modifier
 
Le champ scalaire f(x,y) = −(cos2x + cos2y)2 est représenté par la nappe orange. Le gradient de f est un champ vectoriel, représenté par les flèches bleues ; chacune pointe dans la direction où f croît le plus vite.

Dans un système de coordonnées cartésiennes, le gradient d'une fonction f différentiable au point   est le vecteur noté   de composantes les   (où i = 1, 2, ..., n)[3], c.-à-d. les dérivées partiellesdef par rapport aux coordonnées[4],[5], au point a :

 

Dans un repère orthonormé, si le vecteur gradient n'est pas nul, alors il pointe dans la direction où la fonction croît le plus rapidement, et sa norme est égale au taux de croissance dans cette direction.

Les composantes du gradient de f sont les coefficients des variables dans l'équation réduite de l'espace tangent au point a au graphe de f. Cette propriété lui permet d'être défini indépendamment du choix du système de coordonnées, en tant que champ de vecteurs dont les composantes se transforment lors du passage d'un système de coordonnées à un autre.

La généralisation du gradient aux fonctions différentiables de plusieurs variables et à valeurs vectorielles (et aux applications différentiables entre espaces euclidiens) est la matrice jacobienne. La généralisation aux fonctions entre espaces de Banach est la dérivée de Fréchet.

Notations

modifier

Notation vectorielle

modifier
f'(a)ouDf(a)ou ou ou 
ou, abusivement puisqu'elle n'est pas infinitésimale :
df(a)ou ou 
 ou ou ou .
Le symbole ∇ est appelé nabla. Dans la littérature en anglais, ou parfois en français par commodité typographique, on préfère mettre en gras le symbole du gradient pour signifier son caractère vectoriel :
 ouf.

Notation tensorielle

modifier

En notation tensorielle, le vecteur position  , contravariant, s'écrit   (indice   en position supérieure[b],   variant de 1 au nombre de dimensions de l'espace). Le gradient   d'un champ scalaire  , écrit   en notation tensorielle, est covariant et s'écrit donc   (indice   en position inférieure). La définition du gradient s'écrit alors[6] :

 .

Avec la convention de sommation d'Einstein, la variation infinitésimale de   s'écrit :

 .

Exemple : le gradient de température

modifier

Le gradient de température, ou gradient thermique, est le gradient de la température en tant que fonction scalaire des coordonnées spatiales (lui est une fonction vectorielle de ces coordonnées).

Gradient dans une seule direction (dérivée)

modifier

Supposons que l'on place une poutre rectiligne entre deux murs qui n'ont pas la même température, le mur de gauche étant le plus froid. On observe que, sur la poutre, la température varie dans le temps, et dans l'espace : elle augmente de la gauche vers la droite. À ce phénomène thermodynamique, on associe un phénomène de flux de chaleur, lui-même lié à un gradient de température, c.-à-d. à une variation de la température le long de la poutre (cf. Conduction thermique, Loi de Fourier).

À un instant fixé, à chaque point M de la poutre, on attribue une abscisse x ; par exemple, à l'extrémité gauche, l'abscisse x = 0, et à l'extrémité droite, l'abscisse x = L (longueur de la poutre). En chaque point M(x) de la poutre, on considère la température T(x) ; autrement dit, T est fonction de x.

Entre deux points distants d'une très petite longueur δx, on mesure un écart de température δT. Au sens usuel, le gradient (de température) est le rapport entre ces deux grandeurs :

 

Au sens analytique (mathématique), on parle de gradient si ce rapport admet une limite quand δx tend vers 0, limite notée :

 

On écrit la variation le long de x comme l'approximation (dite du premier ordre) :

 

  signifie que le terme qui reste est négligeable par rapport à  

Propriétés

modifier

Gradient de température dans l'espace à trois dimensions usuel

modifier

En réalité, la température d'un point de la poutre varie en fonction d'un déplacement dans l'espace. On caractérise un point M de l'espace par ses coordonnées cartésiennes : M(x , y , z). « Comme » précédemment, la température est fonction des coordonnées de M : T(x , y , z).

Pour chacune de ces directions, on peut écrire une variation, dite partielle. Si, tout en étant en 3D, on ne se déplace que selon un axe, par exemple selon les ordonnées y, alors on peut réécrire la même formule que précédemment sur l'accroissement de température. Cependant, pour noter la variation, on passe par l'écriture en dérivée partielle (dite ronde) plutôt que par la dérivée unidimensionnelle (dite droite). On écrit la variation le long de y comme l'approximation (dite du premier ordre) :

 

  signifie que le terme qui reste est négligeable par rapport à  

Plus généralement, on se déplace dans l'espace d'un point M(x , y , z) à un point M'(x + δx , y + δy , z + δz), et la température passe de T(x , y , z) à T(x + δx , y + δy , z + δz). En première approximation, cette variation est une fonction linéaire de  , et s'exprime donc comme somme algébrique des variations liées à chacune des composantes de  

 

  signifie que le terme qui reste est négligeable par rapport à  

Soit   le vecteur gradient de température. On peut alors réécrire la relation précédente sous la forme :

 

  désigne le produit scalaire usuel sur  

Propriétés

modifier

Introduction par les éléments différentiels

modifier

Comme pour la différentielle dont il est une variante, le gradient peut être introduit avec le vocabulaire des éléments différentiels. À titre d'exemple, examinons le problème de la variation de l'aire d'un rectangle.

 

Dans le plan (xOy), considérons un rectangle de côtés xety. Sa surface S est égale à xy ; elle dépend donc des coordonnées du point M(x,y). En suivant une démarche intuitive, on convient de noter par dx (resp. dy) une variation infinitésimale de la variable x (resp. y). Lorsque le point M fait un déplacement infinitésimal, la surface varie de façon infinitésimale, et on peut écrire que :

 

On en déduit facilement que :

 

Une simple application numérique où xety seraient des mètres et dxetdy des centimètres illustre que dxdy est négligeable par rapport aux autres grandeurs.

On peut donner un statut mathématique précis aux notations dxetdy (qui sont des formes différentielles), et à la quantité dxdy (qui est alors du second ordre). Le calcul précédent est en fait un calcul de développement limité à l'ordre 1, faisant intervenir les dérivées premières de la fonction xy par rapport à ses deux variables. En négligeant dxdy, on obtient donc :

 

 

Bien sûr, on peut utiliser des notations un peu différentes :

 

 

 
Lignes de niveaux 1et2 de la fonction  , avec les tangentes et les gradients en (2;1/2)et(1;2). Les directions des tangentes sont celles de variation nulle ; les directions des gradients sont celles de variation maximale.

L'intérêt d'introduire ces vecteurs pour exprimer la variation d'une fonction de plusieurs variables est de montrer que :

En effet :   « c.-à-d. »  

En électrostatique, ceci donne les courbes de même potentiel : les « équipotentielles ».

En mathématiques pures

modifier

Gradient dans un espace euclidien

modifier

Contexte

modifier

Soient Eunespace vectoriel euclidien, UunouvertdeE, et une fonction  , différentiable en un point adeU. On note  ladifférentielleenadef ; c'est une forme linéaire sur E. On note   l'image par cette différentielle d'un vecteur hdeE.

Existence et unicité

modifier

Il existe un unique vecteur A tel que pour tout vecteur hdeE,  , où   désigne le produit scalaire sur E.

Le vecteur A est appelé le gradient de fena, et il est noté  . Il vérifie donc :

 

Développement limité

modifier

Si une application   est différentiable en un point a, alors on peut écrire le développement limité de f du premier ordre au voisinage de a (avec la notation de Landau)[7]:

 

Expression canonique : avec dérivées partielles

modifier

Puisque le gradient est lui-même un vecteur de E, il est naturel qu'on cherche à l'exprimer dans une base orthonormée   de cet espace vectoriel. On démontre qu'il s'exprime à l'aide des dérivées partielles sous la forme :

 

Par exemple, en dimension 3, on obtient :

 

Une propriété fondamentale

modifier

Le gradient de f désigne la direction où la pente de f est la plus grande. Précisément[4] :

Soit un point   tel que f est différentiable en a et que   pour tout vecteur   tel que   il existe   tel que :

 

Gradient et dérivée directionnelle

modifier

Changement de base

modifier

Lors d'un changement de base, au travers d'un C1-difféomorphismedeE, l'écriture du gradient suit les règles usuelles des changements de base.

Il ne faut pas confondre changement de base pour l'expression d'une fonction écrite en notations cartésiennes (canoniques) et écriture du gradient adaptée à une notation autre. Par exemple, pour une fonction exprimée en coordonnées polaires, on calcule l'écriture « polaire » du gradient en partant d'une fonction f(r,θ) explicitée en fonction de l'abscisse polaire (r) et de l'argument (θ).

 
qu'on peut aussi noter :
 
tout dépend des notations utilisées. Voir :
 

les vecteurs de type   sont utilisés en coordonnées polaires.

Gradient dans un espace de Hilbert

modifier

Soient   un espace de Hilbert (de dimension finie ou non), U un ouvert de H, et une application  , différentiable en un point adeU. La différentielle Df(a) étant, par définition, une forme linéaire continue sur H, il résulte du théorème de représentation de Riesz qu'il existe un unique vecteur, noté  , de H tel que :

 

Le vecteur   est appelé le gradient de fena.

Une propriété fondamentale

modifier

On montre que si  , alors f croît strictement dans la direction de   en passant par a, c.-à-d. :

Il existe   tel que pour tous settde 

 

Gradient dans une variété riemannienne

modifier

On peut encore étendre cette définition à une fonction définie et différentiable sur une variété riemannienne (M,g). Le gradient de fena est alors un vecteur tangent à la variété en a, défini par :

 

Enfin, si f est un champ scalaire indépendant du système de coordonnées, c'est un tenseur d'ordre 0, et sa dérivée partielle est égale à sa dérivée covariante :

 

En coordonnées contravariantes, on calcule le champ de vecteurs appelé gradient de f :

 

Cette formule permet, une fois établi le tenseur métrique, de calculer facilement le gradient dans tout système de coordonnées.

Propriétés géométriques en dimension 2 ou 3

modifier

Classiquement, le gradient permet de définir la « normale aux courbes de niveau », ce qui se traduit en 2D et en 3D par des propriétés géométriques intéressantes. La propriété de tangence étant liée à la convexité/concavité, il est aussi intéressant de voir le lien qui existe entre gradient et convexité, toujours en 2D ou 3D.

En dimension 2 : gradient normal à une courbe en un point, droite tangente

modifier

Soient une application   continûment différentiable, et une courbe définie par l'équation f(u) = k, où k est une constante. En un point v donné de cette courbe, si le gradient existe et s'il n'est pas nul, alors il donne la direction de la normale en v à la courbe ; la droite tangente en v à la courbe est alors orthogonale au gradient.

Application au traitement d'image

Une image est en fait une fonction de deux variables, notée p(x,y) ; chaque couple de valeurs entières de (x,y) constitue un pixel de l'image, et pour une image en noir et blanc, la valeur prise p(x,y) est appelée "niveau de gris" du pixel. En pratique, il est indispensable d'estimer "la droite tangente à la courbe", même si la fonction p n'est pas analytique (p est en général inconnue) et n'est pas différentiable au point (pixel) d’intérêt. On calcule numériquement les deux gradients notés gxetgy suivant xety, par exemple avec les formules du 2e ordre, qui font appel à seulement 2 pixels chacun pour le calcul et ne force [?donc pas?] à supposer alors qu'il n'y a pas de bruit dans l'image.

La fonction p n'étant pas analytique et ses valeurs numériques étant connues uniquement en des points discrets (les pixels voisins), on peut utiliser diverses formules pour estimer le mieux possible ces gradients de l'image. Par exemple, le filtre de Prewitt permet, en utilisant la proximité des autres pixels de l'image (3 par 3, soit 9 pixels en tout), d'évaluer les gradients gxetgy du pixel d’intérêt, situé au centre par convention du filtre.[réf. souhaitée]

Ayant repéré dans une image donnée les pixels de forts gradients, on peut s'en servir d'amers, c.-à-d. de points particuliers reconnaissables (notés dans une carte, par exemple) permettant de se situer dans l'espace, donc de recaler sa navigation. Les gradients gxetgy sont les composantes du vecteur gradient ; on peut calculer l'angle entre l'axe (Ox) et ce vecteur. Il est alors possible de recaler des angles de prise de vue ; c'est très utile pour le pilotage/guidage des drones aériens, par exemple.

[à recycler]

En dimension 3 : gradient normal à une surface en un point, plan tangent

modifier

Soient une application   continûment différentiable, et une surface définie par l'équation f(u) = k, où k est une constante. En un point v donné de cette surface, si le gradient existe et s'il n'est pas nul, alors il donne la direction de la normale en v à la surface ; le plan tangent en v à la surface est alors orthogonal au gradient.

Gradient et convexité

modifier

Soient   (par exemple, n = 2oun = 3), et une application   continûment différentiable. Si l'application   est monotone (resp. strictement monotone), alors f est convexe (resp. strictement convexe), c.-à-d., en utilisant la caractérisation par les cordes :

 

Cette propriété est intéressante parce qu'elle reste valable même si f n'est pas deux fois différentiable.

Sif est deux fois différentiable, le hessien est positif si et seulement si le gradient est monotone.

Cas de la dimension 1

modifier

La monotonie telle que définie ci-dessus permet de définir une fonction dérivée croissante ou décroissante au sens usuel. Dans le premier cas, on parle de fonction convexe ; dans le second, de fonction concave.

Si la fonction est deux fois dérivable, la croissance de la dérivée (donc du gradient) est assurée par la positivité de la dérivée seconde (équivalent du hessien).

Relations vectorielles

modifier

Cette section ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires indépendantes du sujet.
Pour l'améliorer, ajoutez-en, ou placez des modèles {{Source secondaire souhaitée}}ou{{Source secondaire nécessaire}} sur les passages mal sourcés. (avril 2023)

Enanalyse vectorielle, le gradient peut être combiné à d'autres opérateurs : divergence (div), rotationnel (rot), laplacien (Δ). Soit f une fonction décrivant un champ scalaire, que l'on suppose de classe C2 par rapport à chaque paramètre ; alors :

 
 
 

Notes et références

modifier

Notes

modifier
  1. Autrement dit, quand une grandeur physique dépend aussi de variables non spatiales (par exemple, le temps), on ne tient compte dans le calcul du gradient que des variables spatiales.
  • Malgré cette position supérieure, il s'agit bien d'un indice et non d'un exposant. Il n'y a généralement pas de confusion possible mais, en cas de besoin, toute expression élevée à une puissance est mise entre parenthèses.
  • Références

    modifier
    1. « Gradient », sur larousse.fr
  • « Gradient », sur www.cnil.fr (consulté le )
  • Nathalie Mayer, « Définition | Gradient | Futura Sciences », sur Futura (consulté le )
  • aetb « Gradient », sur www.bibmath.net (consulté le )
  • (en) « Gradient | Definition & Facts | Britannica », sur www.britannica.com, (consulté le )
  • (en) Leonard Susskind et André Cabannes, General Relativity. The Theoretical Minimum, New York, Basic Books, , 373 p. (ISBN 9781541601772et9781541601796), p. 43-44.
  • Jacqueline Lelong-Ferrand et Jean-Marie Arnaudiès, Cours de mathématiques : Analyse, t. 2, Dunod, , p. 181
  • Voir aussi

    modifier

    Sur les autres projets Wikimedia :

    Bibliographie

    modifier

    Articles connexes

    modifier

    Ce document provient de « https://fr.wikipedia.org/w/index.php?title=Gradient&oldid=216035344 ».
     



    Dernière modification le 18 juin 2024, à 00:17  





    Langues

     



    العربية
    Azərbaycanca
    Беларуская
    Беларуская (тарашкевіца)
    Български

    Bosanski
    Català
    Čeština
    Чӑвашла
    Dansk
    Deutsch
    English
    Esperanto
    Español
    Eesti
    Euskara
    فارسی
    Suomi
    Gaeilge
    Galego
    עברית
    Magyar
    Հայերեն
    Bahasa Indonesia
    Ido
    Íslenska
    Italiano


    Қазақша

    Кыргызча
    Lietuvių
    Latviešu

    Nederlands
    Norsk nynorsk
    Norsk bokmål

    Polski
    Português
    Română
    Русский
    Srpskohrvatski / српскохрватски
    Simple English
    Slovenčina
    Slovenščina
    Shqip
    Српски / srpski
    Svenska
    Тоҷикӣ

    Tagalog
    Türkçe
    Татарча / tatarça
    Українська
    Oʻzbekcha / ўзбекча
    Tiếng Vit



     

    Wikipédia


    La dernière modification de cette page a été faite le 18 juin 2024 à 00:17.

    Le contenu est disponible sous licence CC BY-SA 4.0 sauf mention contraire.



    Politique de confidentialité

    À propos de Wikipédia

    Avertissements

    Contact

    Code de conduite

    Développeurs

    Statistiques

    Déclaration sur les témoins (cookies)

    Conditions dutilisation

    Version de bureau