ESCRTendosomal sorting complexes required for transportESCRT-0ESCRT-IESCRT-IIESCRT-IIIESCRT[1][2]ESCRT[3]

ESCRTmultivesicular body[4]ESCRTESCRT-III[5]abscission2ESCRTESCRT2DNAESCRT

多胞体の生合成と積み荷のシャトリング

編集
 
ESCRTを利用した、膜結合タンパク質のリソソームへの輸送。膜結合タンパク質はエンドサイトーシスによって細胞内へ取り込まれる。タンパク質のユビキチンタグがESCRTによって認識され、エンドソームへリクルートされる。多胞体が形成され、タンパク質分解が行われるリソソームと融合する[1]

[6]ESCRT[6][7]

(一)ESCRT-0Vps27Hse1[1][6]

(二)Vps27-3-[1][6]

(三)Vps27ESCRT-IVps23ESCRT-IESCRT-I[1][6]

(四)Vps36ESCRT-IVps28ESCRT-II[1]

(五)ESCRT-IIVps25ESCRT-IIIVps20[1][6][7]

(六)Vps20Snf7Vps24[7]

(七)Vps24Vps2Vps4[7]

(八)Vps4Vta12[1]Vps4-Vta1ESCRT-III[2]

ESCRT複合体と補助タンパク質

編集
 
ESCRTと補助タンパク質の概要[3][5]

ESCRTESCRT


ESCRT-0

編集

ESCRT-0[8][4]

ESCRT-0Vps27Hse11:1[1][5]Vps27Hse1GAT[1]Vps27Hse1NVHS[9]VHSHse11Vps27Vps27VHSFYVE[5][10]-3-FYVEESCRT-0[5]

ESCRT-I

編集

ESCRT-IESCRT-0ESCRT-II[11]ESCRT-IabscissionmidbodyESCRT-IESCRT-III[12]ESCRT-IESCRT[13]

ESCRT-IVps23Vps28Vps37Mvb121:1:1:1[3]Vps23Vps37Mvb12Vps23Vps28Vps37[3][5]Vps23E2ESCRT-0gagPTAP[3][5]E2GPPX3YabscissionESCRT-I[5]Mvb12CVps28ESCRT-IESCRT-IIC4ESCRT-IIVps36GLUE[1]

ESCRT-II

編集

ESCRT-IIESCRT-0ESCRT-IESCRT-IIESCRT-IIESCRT-III[5]

ESCRT-II2Vps251Vps221Vps36[3]Vps25PPXYVps22Vps26winged-helixWHVps22Vps362Vps25Y[3][5]Vps25WHESCRT-IIESCRT-IIIVps36GLUE-3-ESCRT-IVps28[3][5]Vps36GLUE2Vps28C[5]

ESCRT-III

編集

ESCRT-IIIESCRT[14]abscissionESCRT-III[12][15]abscission[16]ESCRT-III[12]

ESCRT-IIIESCRT[1][12]Vps20Snf7Vps24Vps2[5]Vps60Did2Ist1[12]Vps20Snf7ESCRT-IIIVps24Snf7Vps2[1][3]Vps2Vps4[7]C[1][3]ESCRT-IIICMIM[17]Vps4AAA-ATP[3]

Vps4-Vta1

編集

Vps4-Vta1ESCRTESCRT-IIIVps4ESCRT-III[13]Vta1Vps4AAA-ATP[14][18]

Vps42NMITAAA-ATP[3]MITVps2MIM[1]AAA-ATPATPESCRT-III[12]ESCRT-III[12][13]Vta1VSLVps4MITESCRT-IIIVps60Vta1Vps4ATPESCRT-III[5]

Bro1ESCRT-III[19]Bro1ESCRT-III[19]

Bro1NESCRT-IIISnf7[20]Bro1abscissionBro1Doa4Doa4abscissionDoa4[20]

膜のabscission

編集
 
ESCRT複合体の中央体へのリクルート。Cep55はMKLP1に結合する。Cep55はESCRT-IとALIXをリクルートする。ESCRT-IとALIXはESCRT-IIIをリクルートする。ESCRT-IIIは娘細胞の間の膜のネックでらせんを形成し、狭窄と切断を引き起こす[21]

abscission2ESCRT[5]2ESCRTESCRT

Cep55MKLP1[5][22]Cep55ESCRT-IVps23ALIX[5][12][13]ESCRT-IALIXSnf7ESCRT-III[5]ESCRT-IIIVps20Snf7Vps24Vps2Did2Vps23[1][13][19]AAA-ATPDid2Ist1[13][19]Vps4ESCRT-III2[19]abscission

ウイルスの出芽

編集
 
HIVの出芽。a: 細胞膜の直下へのウイルスタンパク質の蓄積は、ウイルスの外側への突出を引き起こす。b: 膜の突出部の根元でESCRT複合体によって狭窄部が形成され、ウイルスを含む小胞が形成される。c: 出芽部分は遊離細胞外ビリオンを残してくびり切れる。(Photo provided by Dr. Matthew Gonda (Wikimedia Commons: Nov. 1998), National Cancer Institute Image ID: 2382)

宿ESCRTHIV-1T宿ESCRT[1]GagESCRT-ITSG101ALIX[13][14]ESCRT-IIICHMP4CHMP2[11]abscission[1][5][13]Vps4ESCRT-III[5]

出典

編集
  1. ^ a b c d e f g h i j k l m n o p q r “The ESCRT machinery”. Curr. Biol. 22 (4): R116–20. (February 2012). doi:10.1016/j.cub.2012.01.028. PMC 3314914. PMID 22361144. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314914/. 
  2. ^ a b Babst M (August 2011). “MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between”. Curr. Opin. Cell Biol. 23 (4): 452–7. doi:10.1016/j.ceb.2011.04.008. PMC 3148405. PMID 21570275. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148405/. 
  3. ^ a b c d e f g h i j k l “Membrane budding and scission by the ESCRT machinery: it's all in the neck”. Nat. Rev. Mol. Cell Biol. 11 (8): 556–66. (August 2010). doi:10.1038/nrm2937. PMC 2922035. PMID 20588296. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922035/. 
  4. ^ a b “Biogenesis and function of multivesicular bodies”. Annu. Rev. Cell Dev. Biol. 23: 519–47. (2007). doi:10.1146/annurev.cellbio.23.090506.123319. PMC 2911632. PMID 17506697. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911632/. 
  5. ^ a b c d e f g h i j k l m n o p q r s t Hurley JH (December 2010). “The ESCRT complexes”. Crit. Rev. Biochem. Mol. Biol. 45 (6): 463–87. doi:10.3109/10409238.2010.502516. PMC 2988974. PMID 20653365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988974/. 
  6. ^ a b c d e f “The ESCRT complexes: structure and mechanism of a membrane-trafficking network”. Annu Rev Biophys Biomol Struct 35: 277–98. (2006). doi:10.1146/annurev.biophys.35.040405.102126. PMC 1648078. PMID 16689637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1648078/. 
  7. ^ a b c d e “ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation”. EMBO J. 29 (5): 871–83. (March 2010). doi:10.1038/emboj.2009.408. PMC 2837172. PMID 20134403. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837172/. 
  8. ^ “Molecular mechanism of multivesicular body biogenesis by ESCRT complexes”. Nature 464 (7290): 864–9. (April 2010). Bibcode2010Natur.464..864W. doi:10.1038/nature08849. PMC 2851844. PMID 20305637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851844/. 
  9. ^ “VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo”. EMBO J. 29 (6): 1045–54. (March 2010). doi:10.1038/emboj.2010.6. PMC 2845278. PMID 20150893. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845278/. 
  10. ^ “Comparative genomics reveals selective distribution and domain organization of FYVE and PX domain proteins across eukaryotic lineages”. BMC Genomics 11: 83. (2010). doi:10.1186/1471-2164-11-83. PMC 2837644. PMID 20122178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837644/. 
  11. ^ a b “ESCRT-III protein requirements for HIV-1 budding”. Cell Host Microbe 9 (3): 235–42. (March 2011). doi:10.1016/j.chom.2011.02.004. PMC 3070458. PMID 21396898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070458/. 
  12. ^ a b c d e f g h “Assembly and disassembly of the ESCRT-III membrane scission complex”. FEBS Lett. 585 (20): 3191–6. (October 2011). doi:10.1016/j.febslet.2011.09.001. PMC 3192940. PMID 21924267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192940/. 
  13. ^ a b c d e f g h “Membrane abscission: first glimpse at dynamic ESCRTs”. Curr. Biol. 22 (15): R603–5. (August 2012). doi:10.1016/j.cub.2012.06.063. PMC 3414845. PMID 22877781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414845/. 
  14. ^ a b c “No strings attached: the ESCRT machinery in viral budding and cytokinesis”. J. Cell Sci. 122 (Pt 13): 2167–77. (July 2009). doi:10.1242/jcs.028308. PMC 2723143. PMID 19535732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723143/. 
  15. ^ “Dynamics of ESCRT protein recruitment during retroviral assembly”. Nat. Cell Biol. 13 (4): 394–401. (April 2011). doi:10.1038/ncb2207. PMC 3245320. PMID 21394083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245320/. 
  16. ^ Glotzer, Michael. "Cytokinesis: Centralspindlin Moonlights as a Membrane Anchor", Current Biology, 18 February 2013
  17. ^ “Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A”. Proc. Natl. Acad. Sci. U.S.A. 102 (39): 13813–8. (September 2005). Bibcode2005PNAS..10213813S. doi:10.1073/pnas.0502165102. PMC 1236530. PMID 16174732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236530/. 
  18. ^ “Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1”. J. Cell Biol. 172 (5): 705–17. (February 2006). doi:10.1083/jcb.200508166. PMC 2063703. PMID 16505166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063703/. 
  19. ^ a b c d e “Regulation of Vps4 during MVB sorting and cytokinesis”. Traffic 12 (10): 1298–305. (October 2011). doi:10.1111/j.1600-0854.2011.01230.x. PMC 3171586. PMID 21658171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171586/. 
  20. ^ a b “Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast”. J. Cell Biol. 192 (2): 295–306. (January 2011). doi:10.1083/jcb.201007018. PMC 3172170. PMID 21263029. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172170/. 
  21. ^ Carmena M (July 2012). “Abscission checkpoint control: stuck in the middle with Aurora B”. Open Biol 2 (7): 120095. doi:10.1098/rsob.120095. PMC 3411112. PMID 22870391. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411112/. 
  22. ^ “Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells”. Biochem. J. 389 (Pt 2): 373–81. (July 2005). doi:10.1042/BJ20050097. PMC 1175114. PMID 15796717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175114/.