コンテンツにスキップ

保存配列

出典: フリー百科事典『ウィキペディア(Wikipedia)』
5H1120-180調(*)(:)(.)( )[1]

 (conserved sequence) DNARNA

RNAtmRNA

配列保存性の研究の歴史

[編集]

DNA1949[2][3][4]  1960DNA (cross-reactivity)[5]c[6] 1965Émile Zuckerkandl [7] 2[3][4] 1966Margaret Dayhoff [8]

配列保存のメカニズム

[編集]

[9][10] (chromosomal rearrangement) [11]

DNADNA (robustness)

コーディング配列

[編集]

DNA31ATGC4DNA20DNA



使 (codon usage bias) mRNAmRNARNA[12][13]

ノンコーディング配列

[編集]

調RNA (ncRNA) ncRNA[14][15]22[16]

保存配列の同定

[編集]

保存配列は、一般的にシーケンスアラインメントに基づいたバイオインフォマティクスによるアプローチによって同定される。ハイスループットなDNAシークエンシングやタンパク質質量分析の手法の進歩によって、2000年代初期以降、比較可能なタンパク質配列やゲノム情報の量は格段に増加した。

相同性検索(ホモロジー・サーチ)

[編集]

BLASTHMMERInfernal[17]HMMRNA[18]PAMBLOSUM

多重配列アラインメント

[編集]
LexA5A[19]

Clustal(*) (:) (.)( )[20] 

ゲノムアラインメント

[編集]

ホールゲノムアラインメント (whole genome alignment, WGA) もまた、種間で高度に保存された領域を同定するために用いられる。現段階では、組み換えや反復配列、そして真核生物のゲノムの大きなサイズを扱う計算の複雑さのために、WGAのツールの正確さやスケーラビリティには限界がある[21]。しかしながら、30以上の近縁の細菌についてのWGAが実現可能なものとなっている[22][23]

スコアリングシステム

[編集]



GERP (Genomic Evolutionary Rate Profiling) GERP[24][25]

PhyloP  PhyloHHM  (statistical phylogenetics) 2P[26][27][28]

極端な保存性

[編集]

超保存エレメント

[編集]

(ultra-conserved element, UCE) UCE[29][30]UCE[31][32][33][34]調

普遍的に保存された遺伝子

[編集]

RNA (LUCA) [35]

GTP2ABC[36]RNArRNAtRNA[37]

応用

[編集]

系統発生学と分類学

[編集]

[38]16S RNA[39][40]調[41][42][43]ITS (internal transcribed spacer) rRNA[44][45][46][47]

医学研究

[編集]

調[48][49][50] health outcome [51][52]

機能のアノテーション

[編集]

保存配列の同定は、遺伝子のような機能的配列を発見したり予測したりするためにも用いられる[53]。タンパク質ドメインのような既知の機能を持つ保存配列が、配列から機能を予測する際には用いられる。Pfam や Conserved Domain Database といった保存されたタンパク質ドメインのデータベースが、タンパク質をコードすると予測された遺伝子の中に機能的ドメインをアノテーションするために用いられる[54]

出典

[編集]


(一)^ Clustal FAQ #Symbols. Clustal. 2014128

(二)^ Sanger, F. (24 September 1949). Species Differences in Insulins. Nature 164 (4169): 529529. doi:10.1038/164529a0. 

(三)^ abMarmur, J; Falkow, S; Mandel, M (October 1963). New Approaches to Bacterial Taxonomy. Annual Review of Microbiology 17 (1): 329372. doi:10.1146/annurev.mi.17.100163.001553. 

(四)^ abPace, N. R.; Sapp, J.; Goldenfeld, N. (17 January 2012). Phylogeny and beyond: Scientific, historical, and conceptual significance of the first tree of life. Proceedings of the National Academy of Sciences 109 (4): 10111018. doi:10.1073/pnas.1109716109. PMC 3268332. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268332/. 

(五)^ Zuckerlandl, Emile; Pauling, Linus B. (1962). Molecular disease, evolution, and genetic heterogeneity. Horizons in Biochemistry: 189225. 

(六)^ Margoliash, E (Oct 1963). PRIMARY STRUCTURE AND EVOLUTION OF CYTOCHROME C. Proc Natl Acad Sci U S A 50 (4): 672679. doi:10.1073/pnas.50.4.672. PMC 221244. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221244/. 

(七)^ Zuckerkandl, E; Pauling, LB (1965). Evolutionary Divergence and Convergence in Proteins. Evolving Genes and Proteins: 96166. doi:10.1016/B978-1-4832-2734-4.50017-6. 

(八)^ Eck, R. V.; Dayhoff, M. O. (15 April 1966). Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences. Science 152 (3720): 363366. doi:10.1126/science.152.3720.363. 

(九)^ Kimura, M (17 February 1968). Evolutionary Rate at the Molecular Level. Nature 217 (5129): 624626. doi:10.1038/217624a0. 

(十)^ King, J. L.; Jukes, T. H. (16 May 1969). Non-Darwinian Evolution. Science 164 (3881): 788798. doi:10.1126/science.164.3881.788. 

(11)^ Kimura, M; Ohta, T (1974). On Some Principles Governing Molecular Evolution. Proc Natl Acad Sci USA 71 (7): 28482852. doi:10.1073/pnas.71.7.2848. PMC 388569. PMID 4527913. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC388569/pdf/pnas00060-0262.pdf. 

(12)^ Chamary, JV; Hurst, Laurence D (2005). Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biology 6 (9): R75. doi:10.1186/gb-2005-6-9-r75. 

(13)^ Wadler, C. S.; Vanderpool, C. K. (27 November 2007). A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proceedings of the National Academy of Sciences 104 (51): 2045420459. doi:10.1073/pnas.0708102104. PMC 2154452. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2154452/. 

(14)^ Johnsson, Per; Lipovich, Leonard; Grandér, Dan; Morris, Kevin V. (March 2014). Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochimica et Biophysica Acta (BBA) - General Subjects 1840 (3): 10631071. doi:10.1016/j.bbagen.2013.10.035. PMC 3909678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909678/. 

(15)^ Freyhult, E. K.; Bollback, J. P.; Gardner, P. P. (6 December 2006). Exploring genomic dark matter: A critical assessment of the performance of homology search methods on noncoding RNA. Genome Research 17 (1): 117125. doi:10.1101/gr.5890907. PMC 1716261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716261/. 

(16)^ T

(17)^ Nawrocki, E. P.; Eddy, S. R. (4 September 2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29 (22): 29332935. doi:10.1093/bioinformatics/btt509. PMC 3810854. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810854/. 

(18)^ Eddy, SR; Durbin, R (11 June 1994). RNA sequence analysis using covariance models.. Nucleic Acids Research 22 (11): 207988. doi:10.1093/nar/22.11.2079. PMC 308124. PMID 8029015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC308124/. 

(19)^ Weblogo.  UC Berkeley. 20171230

(20)^ Clustal FAQ #Symbols. Clustal. 2014128

(21)^ Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Harris, Robert S.; Fitzgerald, Stephen; Beal, Kathryn; Seledtsov, Igor; Molodtsov, Vladimir et al. (December 2014). Alignathon: a competitive assessment of whole-genome alignment methods. Genome Research 24 (12): 20772089. doi:10.1101/gr.174920.114. 

(22)^ Rouli, L.; Merhej, V.; Fournier, P.-E.; Raoult, D. (September 2015). The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes and New Infections 7: 7285. doi:10.1016/j.nmni.2015.06.005. 

(23)^ Méric, Guillaume; Yahara, Koji; Mageiros, Leonardos; Pascoe, Ben; Maiden, Martin C. J.; Jolley, Keith A.; Sheppard, Samuel K.; Bereswill, Stefan (27 March 2014). A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic Campylobacter. PLoS ONE 9 (3): e92798. doi:10.1371/journal.pone.0092798. 

(24)^ Cooper, G. M. (17 June 2005). Distribution and intensity of constraint in mammalian genomic sequence. Genome Research 15 (7): 901913. doi:10.1101/gr.3577405. 

(25)^ Sidow Lab - GERP. mendel.stanford.edu. 20181029

(26)^ Pollard, K. S.; Hubisz, M. J.; Rosenbloom, K. R.; Siepel, A. (26 October 2009). Detection of nonneutral substitution rates on mammalian phylogenies. Genome Research 20 (1): 110121. doi:10.1101/gr.097857.109. 

(27)^ PHAST: Home. compgen.cshl.edu. 20181029

(28)^ Fan, Xiaodan; Zhu, Jun; Schadt, Eric E; Liu, Jun S (2007). Statistical power of phylo-HMM for evolutionarily conserved element detection. BMC Bioinformatics 8 (1): 374. doi:10.1186/1471-2105-8-374. 

(29)^ Bejerano, G. (28 May 2004). Ultraconserved Elements in the Human Genome. Science 304 (5675): 13211325. doi:10.1126/science.1098119. 

(30)^ Siepel, A. (1 August 2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15 (8): 10341050. doi:10.1101/gr.3715005. 

(31)^ Harmston, N.; Baresic, A.; Lenhard, B. (11 November 2013). The mystery of extreme non-coding conservation. Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1632): 2013002120130021. doi:10.1098/rstb.2013.0021. 

(32)^ Faircloth, B. C.; McCormack, J. E.; Crawford, N. G.; Harvey, M. G.; Brumfield, R. T.; Glenn, T. C. (9 January 2012). Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales. Systematic Biology 61 (5): 717726. doi:10.1093/sysbio/sys004. 

(33)^ Faircloth, Brant C.; Branstetter, Michael G.; White, Noor D.; Brady, Seán G. (May 2015). Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Molecular Ecology Resources 15 (3): 489501. doi:10.1111/1755-0998.12328. 

(34)^ Reneker, J.; Lyons, E.; Conant, G. C.; Pires, J. C.; Freeling, M.; Shyu, C.-R.; Korkin, D. (10 April 2012). Long identical multispecies elements in plant and animal genomes. Proceedings of the National Academy of Sciences 109 (19): E1183E1191. doi:10.1073/pnas.1121356109. 

(35)^ Isenbarger, Thomas A.; Carr, Christopher E.; Johnson, Sarah Stewart; Finney, Michael; Church, George M.; Gilbert, Walter; Zuber, Maria T.; Ruvkun, Gary (14 October 2008). The Most Conserved Genome Segments for Life Detection on Earth and Other Planets. Origins of Life and Evolution of Biospheres 38 (6): 517533. doi:10.1007/s11084-008-9148-z. 

(36)^ Harris, J. K. (12 February 2003). The Genetic Core of the Universal Ancestor. Genome Research 13 (3): 407412. doi:10.1101/gr.652803. 

(37)^ Ban, Nenad; Beckmann, Roland; Cate, Jamie HD; Dinman, Jonathan D; Dragon, François; Ellis, Steven R; Lafontaine, Denis LJ; Lindahl, Lasse et al. (February 2014). A new system for naming ribosomal proteins. Current Opinion in Structural Biology 24: 165169. doi:10.1016/j.sbi.2014.01.002. 

(38)^ Gadagkar, Sudhindra R.; Rosenberg, Michael S.; Kumar, Sudhir (15 January 2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 304B (1): 6474. doi:10.1002/jez.b.21026. 

(39)^ Ludwig, W; Schleifer, KH (October 1994). Bacterial phylogeny based on 16S and 23S rRNA sequence analysis.. FEMS Microbiology Reviews 15 (23): 15573. doi:10.1111/j.1574-6976.1994.tb00132.x. PMID 7524576. 

(40)^ Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W. et al. (11 April 2016). A new view of the tree of life. Nature Microbiology 1 (5): 16048. doi:10.1038/nmicrobiol.2016.48. 

(41)^ Zhang, Liqing; Li, Wen-Hsiung (February 2004). Mammalian Housekeeping Genes Evolve More Slowly than Tissue-Specific Genes. Molecular Biology and Evolution 21 (2): 236239. doi:10.1093/molbev/msh010. 

(42)^ Clermont, O.; Bonacorsi, S.; Bingen, E. (1 October 2000). Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Applied and Environmental Microbiology 66 (10): 45554558. doi:10.1128/AEM.66.10.4555-4558.2000. 

(43)^ Kullberg, Morgan; Nilsson, Maria A.; Arnason, Ulfur; Harley, Eric H.; Janke, Axel (August 2006). Housekeeping Genes for Phylogenetic Analysis of Eutherian Relationships. Molecular Biology and Evolution 23 (8): 14931503. doi:10.1093/molbev/msl027. 

(44)^ Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A.; Chen, W.; Bolchacova, E. et al. (27 March 2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109 (16): 62416246. doi:10.1073/pnas.1117018109. 

(45)^ Man, S. M.; Kaakoush, N. O.; Octavia, S.; Mitchell, H. (26 March 2010). The Internal Transcribed Spacer Region, a New Tool for Use in Species Differentiation and Delineation of Systematic Relationships within the Campylobacter Genus. Applied and Environmental Microbiology 76 (10): 30713081. doi:10.1128/AEM.02551-09. 

(46)^ Ranjard, L.; Poly, F.; Lata, J.-C.; Mougel, C.; Thioulouse, J.; Nazaret, S. (1 October 2001). Characterization of Bacterial and Fungal Soil Communities by Automated Ribosomal Intergenic Spacer Analysis Fingerprints: Biological and Methodological Variability. Applied and Environmental Microbiology 67 (10): 44794487. doi:10.1128/AEM.67.10.4479-4487.2001. 

(47)^ Bidet, Philippe; Barbut, Frédéric; Lalande, Valérie; Burghoffer, Béatrice; Petit, Jean-Claude (June 1999). Development of a new PCR-ribotyping method for based on ribosomal RNA gene sequencing. FEMS Microbiology Letters 175 (2): 261266. doi:10.1111/j.1574-6968.1999.tb13629.x. 

(48)^ Ala, Ugo; Piro, Rosario Michael; Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando et al. (28 March 2008). Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis. PLoS Computational Biology 4 (3): e1000043. doi:10.1371/journal.pcbi.1000043. 

(49)^ Pandey, U. B.; Nichols, C. D. (17 March 2011). Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews 63 (2): 411436. doi:10.1124/pr.110.003293. 

(50)^ Huang, Hui; Winter, Eitan E; Wang, Huajun; Weinstock, Keith G; Xing, Heming; Goodstadt, Leo; Stenson, Peter D; Cooper, David N et al. (2004). Genome Biology 5 (7): R47. doi:10.1186/gb-2004-5-7-r47. 

(51)^ Ge, Dongliang; Fellay, Jacques; Thompson, Alexander J.; Simon, Jason S.; Shianna, Kevin V.; Urban, Thomas J.; Heinzen, Erin L.; Qiu, Ping et al. (16 August 2009). Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461 (7262): 399401. doi:10.1038/nature08309. 

(52)^ Bertram, L. (2009). Genome-wide association studies in Alzheimer's disease. Human Molecular Genetics 18: R137R145. doi:10.1093/hmg/ddp406. 

(53)^ Kellis, Manolis; Patterson, Nick; Endrizzi, Matthew; Birren, Bruce; Lander, Eric S. (15 May 2003). Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423 (6937): 241254. doi:10.1038/nature01644. 

(54)^ Marchler-Bauer, A.; Lu, S.; Anderson, J. B.; Chitsaz, F.; Derbyshire, M. K.; DeWeese-Scott, C.; Fong, J. H.; Geer, L. Y. et al. (24 November 2010). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 39 (Database): D225D229. doi:10.1093/nar/gkq1189. 

関連項目

[編集]