コンテンツにスキップ

惑星の居住可能性

出典: フリー百科事典『ウィキペディア(Wikipedia)』
17

: Planetary habitability 

概要

[編集]

SF

[ 1]2019922000

2016510NASA430221[1]

適切な恒星系

[編集]

SETI2002"HabCat""Catalogue of Habitable Stellar Systems"1217"HabStars"使[2]

スペクトル型

[編集]

"HabStars""F""G""K"7,000K4,000KG2""

10"O""B""A"10100[ 2][3]

[4]



""""510%"K""M"""

安定したハビタブルゾーン

[編集]

 (HZ) HZ[ 3]

""HZ2

HZHZHZHZHZHZ[5]

HZHZ[6]

2009HZHZ

恒星の光度変化が小さいこと

[編集]

宿X100%100%

110.1%[7]""1818[8][ 4][9]

高い金属含有率

[編集]

[10]"HabStars"

[11]

惑星の特性

[編集]
巨大ガス惑星の衛星も生命を宿せるかもしれない。

[ 5]宿

[ 6]

質量

[編集]
火星、大気が薄いため、太陽から同じ距離を公転したとしても地球より寒い。

2宿

0.6%4.56mmHg (608Pa) 

1/81/4[12]

""[ 7][13]宿

[14]

軌道と自転

[編集]

[15]0.02

90%0.25[16]



85°[17]4121.5°24.5°





調23

[18]"" - 調[19]

地球化学

[編集]

[ 8]4496%4

4[20]-[21]

[22][19]2/2[19][19]

4""#

代わりとなる恒星系

[編集]

地球外生命の可能性を考える上で、太陽に似た恒星に長らく関心が向けられてきた。しかし最近では、太陽とはとても似ていない恒星系で生命が誕生する可能性が検討されるようになっている。

連星系

[編集]

50%2/3[23]

1AU - AU""1/5[24][25]

AB11AU23AU3AU5%AHZ1.21.3AUB0.730.74AUHZ[26] 

赤色矮星系

[編集]
星の大きさと表面温度。赤色矮星を回る惑星が地球と同じくらいの温度を得るには、自転と公転の同期が起こるような距離まで近づかなければならないだろう。

70%90%

0.080.463%0.01%AX0.3AU0.032AU16.3[27]

 (NASA) Robert HaberleCO2H2O100mbar10%[28]Martin Heath[29]
667Cc



40%[30][31]

455[32]100010寿100-120HZHZ[33]2014186f[34]

橙色矮星系

[編集]

K寿200-1000

その他の考慮すべき点

[編集]

グッド・ジュピター

[編集]

""[35]5""19949

5%[36][36]10.15[36]

[37][19][19]

銀河の領域

[編集]

GHZ[38]







[39]

宿

""[40]

生命自身による影響

[編集]



1975

"Living Worlds"[41]

2004The Privileged Planet""

脚注

[編集]

注釈

[編集]


(一)^ 

(二)^ 5"A"寿612"B"寿10006"O"1000

(三)^ 3.5AU8AUHZ調HZ""

(四)^ 180.09%

(五)^ Evolving the Alien宿

(六)^ Rare Earth: Why Complex Life Is Uncommon in the Universe30調

(七)^ 14""OGLE-2005-BLG-390Lb21210

(八)^ (1H)4(4He)#

参照

[編集]
  1. ^ Briefing materials: 1,284 Newly Validated Kepler Planets NASA
  2. ^ Turnbull, Margaret C., and Jill C. Tarter. "Target selection for SETI: A catalog of nearby habitable stellar systems," The Astrophysical Journal Supplement Series, 145: 181-198, March 2003. (Link Archived 2006年11月9日, at the Wayback Machine. (PDF) ). Habitability criteria defined—the foundational source for this article.
  3. ^ Star Tables Archived 2008年3月17日, at the Wayback Machine., California State University, Los Angeles.
  4. ^ Kasting, J.F.英語版, D.C.B. Whittet, and W.R. Sheldon. "Ultraviolet radiation from F and K stars and implications for planetary habitability," Origins of Life, 27, 413-420, August 1997. (Link abstract on-line). Radiation by spectral type considered.
  5. ^ Kasting, J.F., D.P. Whitmore, R.T. Reynolds. "Habitable Zones Around Main Sequence Stars," Icarus 101, 108-128, 1993. (Link Archived 2009年3月18日, at the Wayback Machine. (PDF) ). Detailed overview of habitable zone estimates.
  6. ^ Williams, Darren M., James F. Kasting, and Richard A. Wade. "Habitable moons around extrasolar giant planets," Nature, 385, 234-236, January 1997. (Link abstract on-line). Habitability of moons within the HZ considered.
  7. ^ The Little Ice Age, University of Washington.
  8. ^ 18 Scorpii, www.solstation.com.
  9. ^ G. W. Lockwood, et al. (May 2002). "Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001" (PDF). Bulletin of the American Astronomical Society 34: 651.
  10. ^ Santos, Nuno C., Garik Israelian and Michel Mayor. "Confirming the Metal-Rich Nature of Stars with Giant Planets," Proceedings of 12th Cambridge Workshop on Cool Stars, Stellar Systems, and The Sun, University of Colorado, 2003. (Link (PDF) ). Metallicity and the occurrence of extra-solar planets.
  11. ^ Buchhave et al. (2012). “An abundance of small exoplanets around stars with a wide range of metallicities”. Nature 486: pp.375-377. Bibcode2012Natur.486..375B. doi:10.1038/nature11121. 
  12. ^ Ward, Peter and Donald Brownlee. Rare Earth: Why Complex Life is Uncommon in the Universe, pp. 191-220, Springer, 2000.
  13. ^ The Heat History of the Earth, James Madison University, Geology.
  14. ^ Magnetic Field of the Earth, Georgia State University.
  15. ^ Rare Earth, pp. 122-123.
  16. ^ Bortman, Henry. Elusive Earths, Astrobiology Magazine, June 22, 2005.
  17. ^ "Planetary Tilt Not A Spoiler For Habitation", Penn State release, August 25 2003.
  18. ^ Laskar, J., F. Joutel and P. Robutel. "Stabilization of the earth's obliquity by the moon," Nature, 361, 615-617, July 1993. (Link abstract on-line). Necessity of Moon for stable obliquity considered.
  19. ^ a b c d e f Raymond et al. (2014). “Terrestrial Planet Formation at Home and Abroad”. Protostars and Planets VI (University of Arizona Press): p.595-618. Bibcode2014prpl.conf..595R. 
  20. ^ Elements, biological abundance David Darling Encyclopedia of Astrobiology, Astronomy and Spaceflight.
  21. ^ "How did chemisty and oceans produce this?", Electronic Universe Project, University of Oregon.
  22. ^ "How did the Earth Get to Look Like This?", Electronic Universe Project, University of Oregon.
  23. ^ Most Milky Way Stars Are Single, Harvard-Smithsonian Center for Astrophysics press release, January 30 2006.
  24. ^ Stars and Habitable Planets, www.solstation.com.
  25. ^ Planetary Systems can form around Binary Stars Archived 2011年5月15日, at the Wayback Machine., Carnegie Institute release, January 15 2006.
  26. ^ Wiegert, Paul A., and Matt J. Holman. "The stability of planets in the Alpha Centauri system," The Astronomical Journal vol. 113, no. 4, April 1997 (Link). Potentially stable orbits and habitable zones around Alpha Centauri A and B.
  27. ^ Habitable zones of stars Archived 2000年11月21日, at the Wayback Machine., University of California.
  28. ^ Joshi, M.M., R. M. Haberle, and R. T. Reynolds. "Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability," Icarus, 129, 450–465, 1997 (Link (PDF) ). Analysis and modelling of atmospheric pressure on planets in Red Dwarf systems.
  29. ^ Heath, Martin J., Laurance R. Doyle, Manoj M. Joshi, and Robert M. Haberle. "Habitability of Planets Around Red Dwarf Stars," Origins of Life and Evolution of the Biosphere, vol. 29, no. 4, 405-424, 1999 (Link (PDF) ). Water cycle, photosynthetic radiation, and the affect of flares on planets in Red Dwarf systems.
  30. ^ Red, Willing and Able, www.kencroswell.com, published in New Scientist January 27, 2001.
  31. ^ Turnbull, M. 2003 SETI Institute News 12(3), 12
  32. ^ "'The end of the world' has already begun", University of Washington release, January 13, 2003.
  33. ^ "M Dwarfs: The Search for Life is On," Interview with Todd Henry, Astrobiology Magazine, August 29, 2005.
  34. ^ First Potentially Habitable Terran World” (英語). Planetary Habitability Laboratory (2014年4月17日). 2014年8月3日閲覧。
  35. ^ Bortman, Henry. "Coming Soon: 'Good' Jupiters", Astrobiology Magazine, September 29, 2004.
  36. ^ a b c Horner & Jones (2011). "Quantifying Jupiter's influence on the Earth's impact flux: Implications for planetary habitability". arXiv:1202.1314 11th annual Australian Space Science Conference
  37. ^ Lunine, Jonathon I. "The occurrence of Jovian planets and the habitability of planetary systems," Proceedings of the National Academy of Science vol. 98, no. 3, 809-814, January 30, 2001 (Link). The role of Jupiter in seeding the early Earth.
  38. ^ Mullen, Leslie. Galactic Habitable Zones, Astrobiology Magazine, May 18 2001.
  39. ^ Rare Earth, pp. 26-29.
  40. ^ Dorminey, Bruce. "Dark Threat." Astronomy July 2005: pp. 40-45
  41. ^ The Living Worlds Hypothesis, Astrobiology Magazine, September 22, 2005.

関連項目

[編集]

関連文献

[編集]

外部リンク

[編集]