54 captures
17 Jul 2011 - 30 Dec 2025
Apr MAY Jun
24
2012 2013 2014
success
fail

About this capture

COLLECTED BY

Organization: Internet Archive

The Internet Archive discovers and captures web pages through many different web crawls. At any given time several distinct crawls are running, some for months, and some every day or longer. View the web archive through the Wayback Machine.

Collection: Wide Crawl started April 2013

Web wide crawl with initial seedlist and crawler configuration from April 2013.
TIMESTAMPS

The Wayback Machine - http://web.archive.org/web/20130524165925/http://zh-min-nan.wikipedia.org/wiki/S%C3%B2%CD%98-ha%CC%8Dk-ka
 



Sò͘-ha̍k



Wikipedia (chū-iû ê pek-kho-choân-su) beh kā lí kóng...

(Tùi Sò͘-ha̍k-ka choán--lâi)

Thiàu khì: Se̍h chām, chhiau-chhoē  

Sò͘-ha̍k tiāⁿ hông khoàⁿ-chò sī leh gián-kiù sò͘-liōng, kiat-kò͘, khong-kan kap piàn-tōng ê ha̍k-būn. Ū koá sò͘-ha̍k-ka kā sò͘-ha̍k tòng-chò sī kong-siat kap teng-gī thaù-koè chhui-lūn tit--tio̍h ê tì-sek.

Ta̍k ê siā-hoē leh chhek-liông thó͘-tē, chhú-lí koè-kè, ī-chhek thian-bûn sū-kiāⁿ, ... ê sî chha-put-to lóng ē-tit khoàⁿ tio̍h èng-iōng sò͘-ha̍k ê iáⁿ. Sò͘-ha̍k thong-siông sī leh chhiau-chhoē bô͘-sek, bô tiāⁿ-tio̍h ài kap èng-iōng ū tī-tāi. M̄-koh Eugene Wigner bat kóng koè "sò͘-ha̍k siuⁿ koè-thaû-á ū-haū", siōng 'sûn' ê sò͘-ha̍k tiāⁿ chhoē tio̍h siōng si̍t-chè ê èng-iōng. Hiān-chhú-sî ê chū-jiân kho-ha̍k, kang-têng, keng-chè, i-ha̍k lóng tio̍h khoàⁿ sò͘-ha̍k ū sin hoat-tián--bô.

Hi-lia̍p-gí ê μάθημα (máthema) piáu-sī "kho-ha̍k, tì-sek, ha̍k-si̍p", μαθηματικός (mathematikós) piáu-sī "kah-ì o̍h mi̍h-kiāⁿ". Eng-gí kā sò͘-ha̍k siá chò mathematics, kán-siá chò maths (Liân-pang Eng-gí), math (Bí-kok Eng-gí).

Bo̍k-lo̍k

Sò͘-ha̍k ê le̍k-sú [siu-kái]

Sò͘-ha̍k ê ián-piàn ē-tit khoàⁿ chò kóng thiu-siōng ê chú-tê iah sī thêng-tō͘ ti̍t-ti̍t leh cheng-ka. Siōng chá ê thiu-siōng hoān-sè sī sò͘-ba̍k. Liáu-kái kóng 2 lia̍p phōng-kó kap 2 lia̍p kam-á ká-ná ū sím-mih sio-kâng ê só͘-chāi, sò͘-ha̍k tō khai-sí hoat-tián--a.

Sú-chêng ê jîn-lūi ē-hiáu sǹg kū-thé ê mi̍h-kiāⁿ, mā chai-iáⁿ beh án-choáⁿ sǹg thiu-siōng ê sò͘-liōng, chhiūⁿ kóng sî-kan (kang, kùi, , ...). Ē-hiáu sǹg, koh lâi tō sī sǹg-siàu (chhiūⁿ ke, kiám, sêng, ).

M̄-koh beh sǹg tio̍h-ài ē-tàng siá kap 1 thò sò͘-jī hē-thóng. Sú-chêng ê jîn-lūi hoān-sè sī tī thô͘-kha oē sûn iah sī tī chhâ-thaû khek sûn lâi piáu-sī sò͘-liōng. Inca Tè-kok bô su-siá hē-thóng, in lī-iōng soh-á phah-kat ê hong-hoat lâi sǹg-siàu, hō-chò khipu.

Sò͘-ha̍k ê hoat-tián kap chhek-liông thó͘-tē, chhú-lí koè-kè, ī-chhek thian-bûn sū-kiāⁿ ū chin bi̍t-chhiat ê koan-hē. In-ūi ū su-iàu, sò͘-ha̍k lāi-té chhú-lí khong-kan, kiat-kò͘, piàn-tōng ê gián-kiù tō toè leh hoat-tián. Khah lō͘-boé, beh kái-koat sio kap kng ê bûn-tê, sò͘-ha̍k bu̍t-lí-ha̍k mā khai-sí hoat-tián.

Tû-khì éng-koè chiah-ê gián-kiù ê chú-tê, sò͘-ha̍k kaù taⁿ mā iû-goân it-ti̍t leh chhòng-sin.

Sûn sò͘-ha̍k kap èng-iōng sò͘-ha̍k [siu-kái]

Ū oh kái-koat ê būn-tê tō su-iàu sò͘-ha̍k. Éng-koè chhiūⁿ siong-gia̍p, thó͘-tē chhek-liông, thian-bûn-ha̍k; hiān-chhú-sî toā-pō͘-hūn ùi chū-jiân kho-ha̍k tit tio̍h lêng-kám, chiâⁿ chē sò͘-ha̍k-ka mā sī bu̍t-lí-ha̍k-ka. Chhiūⁿ í-chá Newton hoat-tián bî-chek-hun, Richard Feynman hoat-tián Feynman kèng-chek-hun, chit-má thaù-koè chhui-lí kap tùi bu̍t-lí ê chhim-ji̍p liáu-kái, tō hoat-tián chhut hiân-lūn (string theory).

Ū būn-tê beh kái-koat, gián-kiù siong-koan ê sò͘-ha̍k liáu-aū, tō ē-tit it-ti̍t èng-iōng chiah-ê sò͘-ha̍k. Kā ū kiōng-tông ki-chhó͘ ê sò͘-ha̍k khioh chò-hoé, chi̍t-koá koan-liām ē-tit tha̍h chò-hoé. 19 sè-kí ê sî, tō án-ne kā sò͘-ha̍k hun-chò èng-iōng sò͘-ha̍k kap sûn sò͘-ha̍k.

Sò͘-ha̍k hō͘ lâng kám-kak iu-ngá, hoān-sè i ê pún-chit tō sī bí-ha̍k, hoān-sè i pun-sin ū 1 chióng bí-kám, m̄-koh che lóng chin oh bêng-khak piáu-ta̍t. Kán-tan-sèng kap phó͘-phiàn-sèng sī sò͘-ha̍k 2 ê chin tiong-iàu ê te̍k-sek. Chiah-ê khoàⁿ--khí-lâi taù bē chò-hoé ê sèng-chit ū-tang-sî-á ē-tàng kiat-ha̍p, chhiūⁿ kóng kā chi̍t-koá bô kāng hun-ki ê sò͘-ha̍k it-thé-hoà, iah sī hoat-tián ē-sái kiōng-tông kè-sǹg ê ke-si. Sûn sò͘-ha̍k chho͘-chho͘ khoàⁿ ká-ná kan-taⁿ i ê bí-kám ū koá kè-ta̍t, kan-taⁿ sò͘-ha̍k-ka ū chhù-bī. M̄-koh gián-kiù chi̍t-ē chìn-tián liáu-aū, sûn sò͘-ha̍k tiāⁿ ē pìⁿ-chiâⁿ èng-iōng sò͘-ha̍k.

Sò͘-ha̍k hû-hō [siu-kái]

Sò͘-ha̍k ê bûn-chiuⁿ bô kài hó tha̍k. Stephen Hawking 1988 chhut ê Sî-kan kán-sú (A Brief History of Time) lāi-té kan-taⁿ ū 1 tiâu sò͘-ha̍k kong-sek, in-ūi chhut-pán-siong kóng múi 1 tiâu kong-sek tō ē kā siau-lō͘ kàng chi̍t-poàⁿ.

Sò͘-ha̍k-ka chin giâm-keh iau-kiû ài kā siuⁿ beh piáu-ta̍t--ê siá chheng-chhó, chóng--sī sò͘-ha̍k iáu-sī ká-ná hoat-lu̍t tiâu-bûn hiah pháiⁿ tha̍k. Sò͘-ha̍k-ka khok-chhiong chū-jiân gí-giân, ēng tēng kah chin bêng-khak ê sò͘-ha̍k bêng-sû, sò͘-ha̍k hû-hō kap bûn-hoat (gí-hoat) lâi ta̍t kaù giâm-keh ê bo̍k-phiau. Ū chi̍t-koá bêng-sû chioh ēng phó͘-thong ê bêng-sû, m̄-koh ì-sù bô tī-tāi, chhiūⁿ khoân (ring), kûn (group), lūi (category); ū-ê bêng-sû sī sò͘-ha̍k choan-iōng--ê, chhiūⁿ homotopy, Hilbert khong-kan. Thiaⁿ kóng Henri Poincaré hông soán ji̍p-khì Hoat-kok Gián-kiù-īⁿ (Académie Française) tō sī beh chhiáⁿ i lâi tēng-gī automorphe.

Sò͘-ha̍k kap kho-ha̍k [siu-kái]

Carl Friedrich Gauss kóng sò͘-ha̍k sī kho-ha̍k ê lú-ông. Sò͘-ha̍k bu̍t-lí-ha̍k-ka Leon M. Lederman khau-sé kóng bu̍t-lí-ha̍k-ka kan-taⁿ sūn-thàn sò͘-ha̍k-ka, sò͘-ha̍k-ka kan-taⁿ sūn-thàn Siōng-tè, sui-bóng chiah-nī kò͘-khiam ê sò͘-ha̍k-ka chin oh chhoē.

Sò͘-ha̍k gián-kiù ê hoān-ûi [siu-kái]

Chá-kî ê sò͘-ha̍k ūi tio̍h siong-gia̍p, chhek-liông, ī-chhek thian-bûn hiān-siōng, hoat-tián kiat-kò͘, khong-kan, piàn-tōng ê gián-kiù, chhiūⁿ tāi-sò͘ (algebra), kí-hô-ha̍k (geometry), hun-sek (analysis). Aū--lâi, tau̍h-tau̍h koh hoat-tián kaù lô-chek, khah kán-tan ê ki-chhó͘ hē-thóng (foundations), kap khah si̍t-iōng ê èng-iōng sò͘-ha̍k (applied mathematics).

Sò͘-ha̍k chú-iàu ê gián-kiù [siu-kái]

Chia lia̍t--ê sī khah chú-iàu ê gián-kiù tê-ba̍k. Khah oân-chéng ê gián-kiù chú-tê chhiáⁿ chham-khó sò͘-ha̍k chú-tê lia̍t-toaⁿ.

Sò͘-liōng (Quantity) [siu-kái]

Leh chhú-lí sò͘-ba̍k, chi̍p-ha̍p, toā-sè (size) chit lūi ê būn-tê, kap chaú-chhoē chhú-lí ê hong-hoat.

1, 2, \ldots 0, 1, -1, \ldots \frac{1}{2}, \frac{2}{3}, 0.125,\ldots \pi, e, \sqrt{2},\ldots i, 3i+2, e^{i\pi/3},\ldots
Chū-jiân-sò͘ Chéng-sò͘ pí-sò͘ Si̍t-sò͘ Ho̍k-cha̍p-sò͘ )
Sò͘-ba̍kChū-jiân-sò͘Chéng-sò͘pí-sò͘Si̍t-sò͘Ho̍k-cha̍p-sò͘Hypercomplex numbersQuaternionsOctonionsSedenionsHyperreal numbersSurreal numbersOrdinal numbersCardinal numbersp-adic numbersInteger sequencesSò͘-ha̍k tiāⁿ-sò͘Number namesBû-hānki-té (Base)]]

Piàn-tōng (Change) [siu-kái]

Leh chhú-lí sò͘-ba̍k kap hâm-sò͘ ê piàn-hoà.

36 \div 9 = 4 Integral as region under curve.png Vectorfield jaredwf.png \int 1_S\,d\mu=\mu(S)
Sǹg-siàu (Arithmetic) Bî-chek-hun Hiòng-liōng bî-chek-hun Hun-sek (Analysis)
\frac{d^2}{dx^2} y = \frac{d}{dx} y + c Limitcycle.jpg LorenzAttractor.png
Bî-hun hong-têng (Differential equations) Tōng-thài hē-thóng (Dynamical systems) Hūn-tūn lí-lūn (Chaos theory)
Sǹg-siàu (Arithmetic) – Bî-chek-hunHiòng-liōng bî-chek-hunHun-sek (Analysis) – Bî-hun hong-têng (Differential equations) – Tōng-thài hē-thóng (Dynamical systems) – Hūn-tūn lí-lūn (Chaos theory) – Hâm-sò͘ lia̍t-toaⁿ

Kiat-kò͘ (Structure) [siu-kái]

Leh chhú-lí toā-sè (size), tùi-thīn (symmetry) kap chi̍t-koá sò͘-ha̍k kiat-kò͘ (mathematical structure) ê būn-tê.

Rubik's cube.svg Elliptic curve simple.png Group diagram d6.svg
Thiu-siōng tāi-sò͘ Sò͘-lūn Kûn-lūn (Group theory)
Torus.jpg MorphismComposition-01.png Lattice of the divisibility of 60.svg
Topology Category theory Order theory
Thiu-siōng tāi-sò͘Sò͘-lūnTāi-sò͘ kí-hô-ha̍kKûn-lūn (Group theory) – MonoidsHun-sek (Analysis) – TopologySoàⁿ-sèng tāi-sò͘ (Linear algebra) – Tô͘-lūn (Graph theory) – Universal tāi-sò͘ (Universal algebra) – Category theoryOrder theoryMeasure theory

Khong-kan koan-hē (Spatial relations) [siu-kái]

Ē-tàng khoàⁿ ê sò͘-ha̍k.

Torus.jpg Pythagorean.svg Taylorsine.svg Osculating circle.svg Koch curve.svg
Topology Kí-hô-ha̍k Saⁿ-kak-hoat Bî-hun kí-hô-ha̍k Chhùi-hêng kí-hô-ha̍k (Fractal geometry)
TopologyKí-hô-ha̍kSaⁿ-kak-hoatTāi-sò͘ kí-hô-ha̍kBî-hun kí-hô-ha̍kBî-hun topology (Differential topology) – Tāi-sò͘ topology (Algebraic topology) – Soàⁿ-sèng tāi-sò͘Chhùi-hêng kí-hô-ha̍k (Fractal geometry)

Discrete sò͘-ha̍k (Discrete mathematics) [siu-kái]

Leh chhú-lí kan-taⁿ ē-tàng 1 ê 1 ê sǹg ê mi̍h-á.

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
Venn A intersect B.svg Caesar3.svg 6n-graf.svg
Combinatorics Native chi̍p-ha̍p-lūn (Naive set theory) Kè-sǹg lí-lūn (Theory of computation) Bi̍t-bé-ha̍k (Cryptography) Tô͘-lūn (Graph theory)
CombinatoricsNative chi̍p-ha̍p-lūn (Naive set theory) – Kè-sǹg lí-lūn (Theory of computation) – Bi̍t-bé-ha̍k (Cryptography) – Tô͘-lūn (Graph theory)

Èng-iōng sò͘-ha̍k (Applied mathematics) [siu-kái]

Leh kái-koat hiān-si̍t būn-tê ê sò͘-ha̍k.

Sò͘-ha̍k bu̍t-lí-ha̍k (Mathematical physics) – MechanicsFluid mechanicsNumerical analysisOptimizationKi-lu̍tThóng-kè-ha̍kFinancial mathematicsGame theoryMathematical biologyBi̍t-bé-ha̍k (Cryptography) – Chu-sìn lí-lūn (Information theory)

Tēng-lí (Theorems) [siu-kái]

Che lia̍t chi̍t-koá m̄-sī sò͘-ha̍k-ka mā ē kám-kak sim-sek ê tēng-lí. Oân-chéng ê chu-liāu chhiáⁿ chham-khó Tēng-lí lia̍t-toaⁿ.

Ti̍t-kak tēng-lí (Pythagorean theorem) – Fermat choè-aū tēng-lí (Fermat's last theorem) – Gödel's incompleteness theoremsCantor's diagonal argument4 sek tēng-lí (Four color theorem) – Zorn's lemmaEuler's identityChurch-Turing thesisRiemann hypothesisContinuum hypothesisCentral limit theoremSǹg-siàu ki-pún tēng-lí (Fundamental theorem of arithmetic) – Tāi-sò͘ ki-pún tēng-lí (Fundamental theorem of algebra) – Bî-chek-hun ki-pún tēng-lí (Fundamental theorem of calculus) – Fundamental theorem of projective geometryGauss-Bonnet theorem.

Chhai-chhek (Conjectures) [siu-kái]

Che lia̍t chi̍t-koá tng-leh gián-kiù ê būn-tê. Oân-chéng ê chu-liāu chhiáⁿ chham-khó Chhai-chhek lia̍t-toaⁿ.

Goldbach Chhai-chhekTwin prime conjectureCollatz conjecturePoincaré conjectureclassification theorems of surfacesP=NP

Lēng-goā, ū-ê sò͘-ha̍k-ka jīn-ûi continuum hypothesis kap ZFC bô tī-tāi, bián chhap i; ū-ê khah chek-ke̍k leh gián-kiù.

Ki-chân kap hong-hoat (Foundations and methods) [siu-kái]

Leh su-khó sò͘-ha̍k ê pún-chit kap sò͘-ha̍k beh án-choáⁿ gián-kiù.

Philosophy of mathematicsMathematical intuitionismMathematical constructivismSò͘-ha̍k ê ki-chân (Foundations of mathematics) – Chi̍p-ha̍p-lūnHû-hō lô-chek (Symbolic logic) – Bô͘-hêng-lūn (Model theory) – Category theoryLô-chekReverse MathematicsSò͘-ha̍k hû-hō-pió (Table of mathematical symbols)

Sò͘-ha̍k-sú kap sò͘-ha̍k-ka [siu-kái]

Chhiáⁿ chham-khó sò͘-ha̍k-sú lia̍t-toaⁿ

Sò͘-ha̍k-súSò͘-ha̍k nî-pióSò͘-ha̍k-kaFields ChióngAbel PrizeMillennium Prize Problems (Clay Math Prize)International Mathematical UnionMathematics competitionsLateral thinkingMathematical abilities and gender issues

Sò͘-ha̍k ê hûn-iáⁿ [siu-kái]

Sò͘-ha̍k kap kiàn-tio̍kSò͘-ha̍k kap kaù-io̍kSò͘-ha̍k kap im-ga̍k

Tùi sò͘-ha̍k ê gō͘-kái [siu-kái]

Sò͘-ha̍k m̄ sī 1 ê sím-mih būn-tê lóng kái-koat tiāu ê hē-thóng, i lāi-té iáu chin chē ài gián-kiù ê būn-tê.

Ké-sò͘-ha̍k khoàⁿ--khí-lâi chhin-chhiūⁿ sò͘-ha̍k, i bô tī ha̍k-su̍t-kài chiap-siū kàm-tok, ū-sî-á koh si sò͘-ha̍k-ka pìⁿ--ê. I thong-siông sī leh thó-lūn khah ū-miâ ê būn-tê, m̄-koh i koh m̄ sī ēng lâng chèng-bêng koè ê lí-lūn chò ki-chân lâi chèng-bêng. Ké-sò͘-ha̍k kap sò͘-ha̍k tō ká-ná ké-kho-ha̍k kap kho-ha̍k chhan-chhiūⁿ. Chit khoán tāi-chì ē lâi hoat-seng ê goân-in ū:

Chham-khó [siu-kái]

  • Boyer, Carl B., A History of Mathematics, Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7. — A concise history of mathematics from the Concept of Number to contemporary Mathematics.
  • Courant, R. and H. Robbins, What Is Mathematics? : An Elementary Approach to Ideas and Methods, Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.
  • Davis, Philip J. and Hersh, Reuben, The Mathematical Experience. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7.— A gentle introduction to the world of mathematics.
  • Eves, Howard, An Introduction to the History of Mathematics, Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
  • Gullberg, Jan, Mathematics—From the Birth of Numbers. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X. — An encyclopedic overview of mathematics presented in clear, simple language.
  • expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online [1].

    Lâi-goân: "http://zh-min-nan.wikipedia.org/w/index.php?title=Sò͘-ha̍k&oldid=426849" 

    Lūi-pia̍t: 
    Su-iàu hoan-e̍k ê bûn-chiu
    Sò͘-ha̍k




    Navigation menu



    Kò-jîn kang-khū



    Khui sin kháu-chō
    Teng-ji̍p
     



    Miâ-khong-kan



    Bûn-chiu

    thó-lūn
     


    piàn-thé









    Khoà



    Tha̍k

    Siu-kái

    khoà le̍k-sú
     


    Tōng-chok













    Se̍h chām




    Thâu-ia̍h

    Bûn-chiu bo̍k-chhù

    Sûi-chāi kéng ia̍h

    Sin-bûn sū-kiā

    Kià-hù
     



    Pian-chi̍p




    Soat-bêng-su

    Siā-lí mn̂g-chhùi-kháu

    Thó-lūn

    Chòe-kīn ê kái-piàn
     



    Ke-si kheh-á




    Tó-ūi liân kàu chia

    Siong-koan ê kái-piàn

    Te̍k-sû-ia̍h

    Ìn-soat pán-pún

    Éng-kiú liân-kiat

    Page information

    Ín-iōng chit phi bûn-chiu
     



    Kî-tha ê gí-giân




    Afrikaans

    Alemannisch



    Aragonés

    Ænglisc

    العربية

    مصرى



    Asturianu

    Aymar aru

    Azərbaycanca

    Башҡортса

    Boarisch

    Žemaitėška

    Беларуская

    Беларуская (тарашкевіца)

    Български

    Bahasa Banjar





    িি ি

    Brezhoneg

    Bosanski

     

    Català

    Cebuano

    Chamoru

    کوردی

    Corsu

    Qırımtatarca

    Česky

    Kaszëbsczi

    Чӑвашла

    Cymraeg

    Dansk

    Deutsch

    Zazaki

    Dolnoserbski

    ދިވެހިބަސް

    Ελληνικά

    Emiliàn e rumagnòl

    English

    Esperanto

    Español

    Eesti

    Euskara

    Estremeñu

    فارسی

    Suomi

    Võro

    Føroyskt

    Français

    Nordfriisk

    Furlan

    Frysk

    Gaeilge



    Gàidhlig

    Galego

    Avañe'



    Gaelg

    Hak-kâ-fa

    Hawai`i

    עברית

    ि

    Fiji Hindi

    Hrvatski

    Kreyòl ayisyen

    Magyar

    Հայերեն

    Interlingua

    Bahasa Indonesia

    Interlingue

    Igbo

    Ilokano

    Ido

    Íslenska

    Italiano



    Lojban

    Basa Jawa



    Taqbaylit

    Қазақша

    Kalaallisut







    Къарачай-малкъар

    Kurdî

    Кыргызча

    Latina

    Ladino

    Lëtzebuergesch

    Лезги

    Limburgs

    Ligure

    Lumbaart



    Lietuvių

    Latviešu

    Basa Banyumasan

    Мокшень

    Malagasy

    Олык марий

    Македонски



    Монгол



    Bahasa Melayu

    Malti

    Mirandés



    Эрзянь

    Nāhuatl

    Plattdüütsch

    Nedersaksies



     

    Nederlands

    Norsk nynorsk

    Norsk bokmål

    Novial

    Nouormand

    Diné bizaad

    Occitan

    ି

    Ирон



    Pangasinan

    Picard

    ि

    Polski

    Piemontèis

    پنجابی

    پښتو

    Português

    Runa Simi

    Română

    Armãneashce

    Русский

    Русиньскый



    Саха тыла

    Sardu

    Sicilianu

    Scots

    Srpskohrvatski / српскохрватски



    Simple English

    Slovenčina

    Slovenščina

    Gagana Samoa

    ChiShona

    Soomaaliga

    Shqip

    Српски / srpski

    Sranantongo

    SiSwati

    Seeltersk

    Basa Sunda

    Svenska

    Kiswahili

    Ślůnski

    ி



    Tetun

    Тоҷикӣ



    Türkmençe

    Tagalog

    Tok Pisin

    Türkçe

    Xitsonga

    Татарча/tatarça

    Українська

    اردو

    Oʻzbekcha

    Vèneto

    Tiếng Vit

    Volapük

    Winaray

    Wolof



    Хальмг

    ייִדיש

    Yorùbá

    Vahcuengh







    IsiZulu

    Edit links
     







    Chit ia̍h tī 2013-nî 3-goe̍h 11-ji̍t (Pài-it), 11:14 ū kái--koè

    Text is available under the Creative Commons Attribution/Share-Alike License; additional terms may apply. See Terms of Use for details.
     


    Ín-su chèng-chhek

    Koan-hē Wikipedia

    Bô-hū-chek seng-bêng

    Mobile view
     


    Wikimedia Foundation
    Powered by MediaWiki