Apr
MAY
Jun
24
2012
2013
2014
About this capture
Organization:
Internet Archive
The Internet Archive discovers and captures web pages through many different web crawls.
At any given time several distinct crawls are running, some for months, and some every day or longer.
View the web archive through the
Wayback Machine .
Web wide crawl with initial seedlist and crawler configuration from April 2013.
T h e W a y b a c k M a c h i n e - h t t p : / / w e b . a r c h i v e . o r g / w e b / 2 0 1 3 0 5 2 4 1 6 5 9 2 5 / h t t p : / / z h - m i n - n a n . w i k i p e d i a . o r g / w i k i / S % C 3 % B 2 % C D % 9 8 - h a % C C % 8 D k - k a
S ò ͘ - h a ̍ k
W i k i p e d i a ( c h ū - i û ê p e k - k h o - c h o â n - s u ) b e h k ā l í k ó n g . . .
( T ù i S ò ͘ - h a ̍ k - k a c h o á n - - l â i )
T h i à u k h ì : S e ̍ h c h ā m , c h h i a u - c h h o ē
Sò͘-ha̍k tiāⁿ hông khoàⁿ-chò sī leh gián-kiù sò͘-liōng , kiat-kò͘ , khong-kan kap piàn-tōng ê ha̍k-būn. Ū koá sò͘-ha̍k-ka kā sò͘-ha̍k tòng-chò sī kong-siat kap teng-gī thaù-koè chhui-lūn tit--tio̍h ê tì-sek .
Ta̍k ê siā-hoē leh chhek-liông thó͘-tē, chhú-lí koè-kè , ī-chhek thian-bûn sū-kiāⁿ, ... ê sî chha-put-to lóng ē-tit khoàⁿ tio̍h èng-iōng sò͘-ha̍k ê iáⁿ. Sò͘-ha̍k thong-siông sī leh chhiau-chhoē bô͘-sek, bô tiāⁿ-tio̍h ài kap èng-iōng ū tī-tāi. M̄-koh Eugene Wigner bat kóng koè "sò͘-ha̍k siuⁿ koè-thaû-á ū-haū ", siōng 'sûn' ê sò͘-ha̍k tiāⁿ chhoē tio̍h siōng si̍t-chè ê èng-iōng. Hiān-chhú-sî ê chū-jiân kho-ha̍k , kang-têng , keng-chè , i-ha̍k lóng tio̍h khoàⁿ sò͘-ha̍k ū sin hoat-tián--bô.
Hi-lia̍p-gí ê μάθημα (máthema ) piáu-sī "kho-ha̍k, tì-sek, ha̍k-si̍p", μαθηματικός (mathematikós ) piáu-sī "kah-ì o̍h mi̍h-kiāⁿ". Eng-gí kā sò͘-ha̍k siá chò mathematics , kán-siá chò maths (Liân-pang Eng-gí ), math (Bí-kok Eng-gí ).
Sò͘-ha̍k ê le̍k-sú [siu-kái ]
Sò͘-ha̍k ê ián-piàn ē-tit khoàⁿ chò kóng thiu-siōng ê chú-tê iah sī thêng-tō͘ ti̍t-ti̍t leh cheng-ka. Siōng chá ê thiu-siōng hoān-sè sī sò͘-ba̍k . Liáu-kái kóng 2 lia̍p phōng-kó kap 2 lia̍p kam-á ká-ná ū sím-mih sio-kâng ê só͘-chāi, sò͘-ha̍k tō khai-sí hoat-tián--a.
Sú-chêng ê jîn-lūi ē-hiáu sǹg kū-thé ê mi̍h-kiāⁿ, mā chai-iáⁿ beh án-choáⁿ sǹg thiu-siōng ê sò͘-liōng, chhiūⁿ kóng sî-kan (kang , kùi , nî , ...). Ē-hiáu sǹg, koh lâi tō sī sǹg-siàu (chhiūⁿ ke , kiám , sêng , tû ).
M̄-koh beh sǹg tio̍h-ài ē-tàng siá kap 1 thò sò͘-jī hē-thóng . Sú-chêng ê jîn-lūi hoān-sè sī tī thô͘-kha oē sûn iah sī tī chhâ-thaû khek sûn lâi piáu-sī sò͘-liōng . Inca Tè-kok bô su-siá hē-thóng, in lī-iōng soh-á phah-kat ê hong-hoat lâi sǹg-siàu, hō-chò khipu .
Sò͘-ha̍k ê hoat-tián kap chhek-liông thó͘-tē, chhú-lí koè-kè , ī-chhek thian-bûn sū-kiāⁿ ū chin bi̍t-chhiat ê koan-hē. In-ūi ū su-iàu, sò͘-ha̍k lāi-té chhú-lí khong-kan , kiat-kò͘ , piàn-tōng ê gián-kiù tō toè leh hoat-tián. Khah lō͘-boé, beh kái-koat sio kap kng ê bûn-tê, sò͘-ha̍k bu̍t-lí-ha̍k mā khai-sí hoat-tián.
Tû-khì éng-koè chiah-ê gián-kiù ê chú-tê, sò͘-ha̍k kaù taⁿ mā iû-goân it-ti̍t leh chhòng-sin.
Sûn sò͘-ha̍k kap èng-iōng sò͘-ha̍k [siu-kái ]
Ū oh kái-koat ê būn-tê tō su-iàu sò͘-ha̍k. Éng-koè chhiūⁿ siong-gia̍p , thó͘-tē chhek-liông , thian-bûn-ha̍k ; hiān-chhú-sî toā-pō͘-hūn ùi chū-jiân kho-ha̍k tit tio̍h lêng-kám, chiâⁿ chē sò͘-ha̍k-ka mā sī bu̍t-lí-ha̍k-ka . Chhiūⁿ í-chá Newton hoat-tián bî-chek-hun , Richard Feynman hoat-tián Feynman kèng-chek-hun , chit-má thaù-koè chhui-lí kap tùi bu̍t-lí ê chhim-ji̍p liáu-kái, tō hoat-tián chhut hiân-lūn (string theory ).
Ū būn-tê beh kái-koat, gián-kiù siong-koan ê sò͘-ha̍k liáu-aū, tō ē-tit it-ti̍t èng-iōng chiah-ê sò͘-ha̍k. Kā ū kiōng-tông ki-chhó͘ ê sò͘-ha̍k khioh chò-hoé, chi̍t-koá koan-liām ē-tit tha̍h chò-hoé. 19 sè-kí ê sî, tō án-ne kā sò͘-ha̍k hun-chò èng-iōng sò͘-ha̍k kap sûn sò͘-ha̍k .
Sò͘-ha̍k hō͘ lâng kám-kak iu-ngá, hoān-sè i ê pún-chit tō sī bí-ha̍k , hoān-sè i pun-sin ū 1 chióng bí-kám , m̄-koh che lóng chin oh bêng-khak piáu-ta̍t. Kán-tan-sèng kap phó͘-phiàn-sèng sī sò͘-ha̍k 2 ê chin tiong-iàu ê te̍k-sek. Chiah-ê khoàⁿ--khí-lâi taù bē chò-hoé ê sèng-chit ū-tang-sî-á ē-tàng kiat-ha̍p, chhiūⁿ kóng kā chi̍t-koá bô kāng hun-ki ê sò͘-ha̍k it-thé-hoà , iah sī hoat-tián ē-sái kiōng-tông kè-sǹg ê ke-si. Sûn sò͘-ha̍k chho͘-chho͘ khoàⁿ ká-ná kan-taⁿ i ê bí-kám ū koá kè-ta̍t, kan-taⁿ sò͘-ha̍k-ka ū chhù-bī. M̄-koh gián-kiù chi̍t-ē chìn-tián liáu-aū, sûn sò͘-ha̍k tiāⁿ ē pìⁿ-chiâⁿ èng-iōng sò͘-ha̍k.
Sò͘-ha̍k hû-hō [siu-kái ]
Sò͘-ha̍k ê bûn-chiuⁿ bô kài hó tha̍k. Stephen Hawking 1988 chhut ê Sî-kan kán-sú (A Brief History of Time ) lāi-té kan-taⁿ ū 1 tiâu sò͘-ha̍k kong-sek , in-ūi chhut-pán-siong kóng múi 1 tiâu kong-sek tō ē kā siau-lō͘ kàng chi̍t-poàⁿ.
Sò͘-ha̍k-ka chin giâm-keh iau-kiû ài kā siuⁿ beh piáu-ta̍t--ê siá chheng-chhó, chóng--sī sò͘-ha̍k iáu-sī ká-ná hoat-lu̍t tiâu-bûn hiah pháiⁿ tha̍k. Sò͘-ha̍k-ka khok-chhiong chū-jiân gí-giân , ēng tēng kah chin bêng-khak ê sò͘-ha̍k bêng-sû , sò͘-ha̍k hû-hō kap bûn-hoat (gí-hoat ) lâi ta̍t kaù giâm-keh ê bo̍k-phiau. Ū chi̍t-koá bêng-sû chioh ēng phó͘-thong ê bêng-sû, m̄-koh ì-sù bô tī-tāi, chhiūⁿ khoân (ring ), kûn (group ), lūi (category ); ū-ê bêng-sû sī sò͘-ha̍k choan-iōng--ê, chhiūⁿ homotopy , Hilbert khong-kan . Thiaⁿ kóng Henri Poincaré hông soán ji̍p-khì Hoat-kok Gián-kiù-īⁿ (Académie Française ) tō sī beh chhiáⁿ i lâi tēng-gī automorphe .
Sò͘-ha̍k kap kho-ha̍k [siu-kái ]
Carl Friedrich Gauss kóng sò͘-ha̍k sī kho-ha̍k ê lú-ông. Sò͘-ha̍k bu̍t-lí-ha̍k-ka Leon M. Lederman khau-sé kóng bu̍t-lí-ha̍k-ka kan-taⁿ sūn-thàn sò͘-ha̍k-ka, sò͘-ha̍k-ka kan-taⁿ sūn-thàn Siōng-tè, sui-bóng chiah-nī kò͘-khiam ê sò͘-ha̍k-ka chin oh chhoē.
Sò͘-ha̍k gián-kiù ê hoān-ûi [siu-kái ]
Chá-kî ê sò͘-ha̍k ūi tio̍h siong-gia̍p, chhek-liông, ī-chhek thian-bûn hiān-siōng, hoat-tián kiat-kò͘, khong-kan, piàn-tōng ê gián-kiù, chhiūⁿ tāi-sò͘ (algebra ), kí-hô-ha̍k (geometry ), hun-sek (analysis ). Aū--lâi, tau̍h-tau̍h koh hoat-tián kaù lô-chek , khah kán-tan ê ki-chhó͘ hē-thóng (foundations ), kap khah si̍t-iōng ê èng-iōng sò͘-ha̍k (applied mathematics ).
Sò͘-ha̍k chú-iàu ê gián-kiù [siu-kái ]
Chia lia̍t--ê sī khah chú-iàu ê gián-kiù tê-ba̍k. Khah oân-chéng ê gián-kiù chú-tê chhiáⁿ chham-khó sò͘-ha̍k chú-tê lia̍t-toaⁿ .
Sò͘-liōng (Quantity ) [siu-kái ]
Leh chhú-lí sò͘-ba̍k , chi̍p-ha̍p , toā-sè (size ) chit lūi ê būn-tê, kap chaú-chhoē chhú-lí ê hong-hoat.
Sò͘-ba̍k – Chū-jiân-sò͘ – Chéng-sò͘ – pí-sò͘ – Si̍t-sò͘ – Ho̍k-cha̍p-sò͘ – Hypercomplex numbers – Quaternions – Octonions – Sedenions – Hyperreal numbers – Surreal numbers – Ordinal numbers – Cardinal numbers – p -adic numbers – Integer sequences – Sò͘-ha̍k tiāⁿ-sò͘ – Number names – Bû-hān – ki-té (Base)]]
Piàn-tōng (Change ) [siu-kái ]
Leh chhú-lí sò͘-ba̍k kap hâm-sò͘ ê piàn-hoà.
Sǹg-siàu (Arithmetic ) – Bî-chek-hun – Hiòng-liōng bî-chek-hun – Hun-sek (Analysis ) – Bî-hun hong-têng (Differential equations ) – Tōng-thài hē-thóng (Dynamical systems ) – Hūn-tūn lí-lūn (Chaos theory ) – Hâm-sò͘ lia̍t-toaⁿ
Kiat-kò͘ (Structure ) [siu-kái ]
Leh chhú-lí toā-sè (size ), tùi-thīn (symmetry ) kap chi̍t-koá sò͘-ha̍k kiat-kò͘ (mathematical structure ) ê būn-tê.
Thiu-siōng tāi-sò͘ – Sò͘-lūn – Tāi-sò͘ kí-hô-ha̍k – Kûn-lūn (Group theory ) – Monoids – Hun-sek (Analysis ) – Topology – Soàⁿ-sèng tāi-sò͘ (Linear algebra ) – Tô͘-lūn (Graph theory ) – Universal tāi-sò͘ (Universal algebra ) – Category theory – Order theory – Measure theory
Khong-kan koan-hē (Spatial relations ) [siu-kái ]
Ē-tàng khoàⁿ ê sò͘-ha̍k.
Topology – Kí-hô-ha̍k – Sa ⁿ-kak-hoat – Tāi-sò͘ kí-hô-ha̍k – Bî-hun kí-hô-ha̍k – Bî-hun topology (Differential topology ) – Tāi-sò͘ topology (Algebraic topology ) – Soàⁿ-sèng tāi-sò͘ – Chhùi-hêng kí-hô-ha̍k (Fractal geometry )
Discrete sò͘-ha̍k (Discrete mathematics ) [siu-kái ]
Leh chhú-lí kan-taⁿ ē-tàng 1 ê 1 ê sǹg ê mi̍h-á.
Combinatorics – Native chi̍p-ha̍p-lūn (Naive set theory ) – Kè-sǹg lí-lūn (Theory of computation ) – Bi̍t-bé-ha̍k (Cryptography ) – Tô͘-lūn (Graph theory )
Èng-iōng sò͘-ha̍k (Applied mathematics ) [siu-kái ]
Leh kái-koat hiān-si̍t būn-tê ê sò͘-ha̍k.
Sò͘-ha̍k bu̍t-lí-ha̍k (Mathematical physics ) – Mechanics – Fluid mechanics – Numerical analysis – Optimization – Ki-lu̍t – Thóng-kè-ha̍k – Financial mathematics – Game theory – Mathematical biology – Bi̍t-bé-ha̍k (Cryptography ) – Chu-sìn lí-lūn (Information theory )
Tēng-lí (Theorems ) [siu-kái ]
Che lia̍t chi̍t-koá m̄-sī sò͘-ha̍k-ka mā ē kám-kak sim-sek ê tēng-lí. Oân-chéng ê chu-liāu chhiáⁿ chham-khó Tēng-lí lia̍t-toaⁿ .
Ti̍t-kak tēng-lí (Pythagorean theorem ) – Fermat choè-aū tēng-lí (Fermat's last theorem ) – Gödel's incompleteness theorems – Cantor's diagonal argument – 4 sek tēng-lí (Four color theorem ) – Zorn's lemma – Euler's identity – Church-Turing thesis – Riemann hypothesis – Continuum hypothesis – Central limit theorem – Sǹg-siàu ki-pún tēng-lí (Fundamental theorem of arithmetic ) – Tāi-sò͘ ki-pún tēng-lí (Fundamental theorem of algebra ) – Bî-chek-hun ki-pún tēng-lí (Fundamental theorem of calculus ) – Fundamental theorem of projective geometry – Gauss-Bonnet theorem .
Chhai-chhek (Conjectures ) [siu-kái ]
Che lia̍t chi̍t-koá tng-leh gián-kiù ê būn-tê. Oân-chéng ê chu-liāu chhiáⁿ chham-khó Chhai-chhek lia̍t-toaⁿ .
Goldbach Chhai-chhek – Twin prime conjecture – Collatz conjecture – Poincaré conjecture – classification theorems of surfaces – P=NP
Lēng-goā, ū-ê sò͘-ha̍k-ka jīn-ûi continuum hypothesis kap ZFC bô tī-tāi, bián chhap i; ū-ê khah chek-ke̍k leh gián-kiù.
Ki-chân kap hong-hoat (Foundations and methods ) [siu-kái ]
Leh su-khó sò͘-ha̍k ê pún-chit kap sò͘-ha̍k beh án-choáⁿ gián-kiù.
Philosophy of mathematics – Mathematical intuitionism – Mathematical constructivism – Sò͘-ha̍k ê ki-chân (Foundations of mathematics) – Chi̍p-ha̍p-lūn – Hû-hō lô-chek (Symbolic logic ) – Bô͘-hêng-lūn (Model theory) – Category theory – Lô-chek – Reverse Mathematics – Sò͘-ha̍k hû-hō-pió (Table of mathematical symbols )
Sò͘-ha̍k-sú kap sò͘-ha̍k-ka [siu-kái ]
Chhiáⁿ chham-khó sò͘-ha̍k-sú lia̍t-toaⁿ
Sò͘-ha̍k-sú – Sò͘-ha̍k nî-pió – Sò͘-ha̍k-ka – Fields Chióng – Abel Prize – Millennium Prize Problems (Clay Math Prize) – International Mathematical Union – Mathematics competitions – Lateral thinking – Mathematical abilities and gender issues
Sò͘-ha̍k ê hûn-iáⁿ [siu-kái ]
Sò͘-ha̍k kap kiàn-tio̍k – Sò͘-ha̍k kap kaù-io̍k – Sò͘-ha̍k kap im-ga̍k
Tùi sò͘-ha̍k ê gō͘-kái [siu-kái ]
Sò͘-ha̍k m̄ sī 1 ê sím-mih būn-tê lóng kái-koat tiāu ê hē-thóng, i lāi-té iáu chin chē ài gián-kiù ê būn-tê.
Ké-sò͘-ha̍k khoàⁿ--khí-lâi chhin-chhiūⁿ sò͘-ha̍k, i bô tī ha̍k-su̍t-kài chiap-siū kàm-tok, ū-sî-á koh si sò͘-ha̍k-ka pìⁿ--ê. I thong-siông sī leh thó-lūn khah ū-miâ ê būn-tê, m̄-koh i koh m̄ sī ēng lâng chèng-bêng koè ê lí-lūn chò ki-chân lâi chèng-bêng. Ké-sò͘-ha̍k kap sò͘-ha̍k tō ká-ná ké-kho-ha̍k kap kho-ha̍k chhan-chhiūⁿ. Chit khoán tāi-chì ē lâi hoat-seng ê goân-in ū:
Benson, Donald C., The Moment of Proof: Mathematical Epiphanies , Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4 .
Boyer, Carl B. , A History of Mathematics , Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7 . — A concise history of mathematics from the Concept of Number to contemporary Mathematics.
Courant, R. and H. Robbins, What Is Mathematics? : An Elementary Approach to Ideas and Methods , Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2 .
Davis, Philip J. and Hersh, Reuben , The Mathematical Experience . Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7 .— A gentle introduction to the world of mathematics.
Eves, Howard, An Introduction to the History of Mathematics , Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0 .
Gullberg, Jan, Mathematics—From the Birth of Numbers . W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X . — An encyclopedic overview of mathematics presented in clear, simple language.
expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online [1 ] .
Jourdain, Philip E. B., The Nature of Mathematics , in The World of Mathematics , James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8 .
Kline, Morris , Mathematical Thought from Ancient to Modern Times , Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7 .
Template:Cite paper
The Oxford Dictionary of English Etymology , 1983 reprint. ISBN 0-19-861112-9 .
Pappas, Theoni, The Joy Of Mathematics , Wide World Publishing; Revised edition (June 1989). ISBN 0-933174-65-9 .
Peterson, Ivars, Mathematical Tourist, New and Updated Snapshots of Modern Mathematics , Owl Books, 2001, ISBN 0-8050-7159-8 .
Template:Cite book en
Template:Cite journal en
Template:Cite journal en
Template:Cite book en
Template:Cite paper
L â i - g o â n : " h t t p : / / z h - m i n - n a n . w i k i p e d i a . o r g / w / i n d e x . p h p ? t i t l e = S ò ͘ - h a ̍ k & o l d i d = 4 2 6 8 4 9 "
L ū i - p i a ̍ t :
● S u - i à u h o a n - e ̍ k ê b û n - c h i u ⁿ
● S ò ͘ - h a ̍ k
N a v i g a t i o n m e n u
K ò - j î n k a n g - k h ū
● K h u i s i n k h á u - c h ō
● T e n g - j i ̍ p
M i â - k h o n g - k a n
● B û n - c h i u ⁿ
● t h ó - l ū n
p i à n - t h é
K h o à ⁿ
● T h a ̍ k
● S i u - k á i
● k h o à ⁿ l e ̍ k - s ú
T ō n g - c h o k
C h h i a u - c h h o ē
S e ̍ h c h ā m
● T h â u - i a ̍ h
● B û n - c h i u ⁿ b o ̍ k - c h h ù
● S û i - c h ā i k é n g i a ̍ h
● S i n - b û n s ū - k i ā ⁿ
● K i à - h ù
P i a n - c h i ̍ p
● S o a t - b ê n g - s u
● S i ā - l í m n ̂ g - c h h ù i - k h á u
● T h ó - l ū n
● C h ò e - k ī n ê k á i - p i à n
K e - s i k h e h - á
● T ó - ū i l i â n k à u c h i a
● S i o n g - k o a n ê k á i - p i à n
● T e ̍ k - s û - i a ̍ h
● Ì n - s o a t p á n - p ú n
● É n g - k i ú l i â n - k i a t
● P a g e i n f o r m a t i o n
● Í n - i ō n g c h i t p h i ⁿ b û n - c h i u ⁿ
K î - t h a ⁿ ê g í - g i â n
● A f r i k a a n s
● A l e m a n n i s c h
● አ ማ ር ኛ
● A r a g o n é s
● Æ n g l i s c
● ا ل ع ر ب ي ة
● م ص ر ى
● অ স ম ী য ় া
● A s t u r i a n u
● A y m a r a r u
● A z ə r b a y c a n c a
● Б а ш ҡ о р т с а
● B o a r i s c h
● Ž e m a i t ė š k a
● Б е л а р у с к а я
● Б е л а р у с к а я ( т а р а ш к е в і ц а )
● Б ъ л г а р с к и
● B a h a s a B a n j a r
● ব া ং ল া
● བ ོ ད ་ ཡ ི ག
● ব ি ষ ্ ণ ু প ্ র ি য ় া ম ণ ি প ু র ী
● B r e z h o n e g
● B o s a n s k i
● ᨅ ᨔ ᨕ ᨘ ᨁ ᨗ
● C a t a l à
● C e b u a n o
● C h a m o r u
● ک و ر د ی
● C o r s u
● Q ı r ı m t a t a r c a
● Č e s k y
● K a s z ë b s c z i
● Ч ӑ в а ш л а
● C y m r a e g
● D a n s k
● D e u t s c h
● Z a z a k i
● D o l n o s e r b s k i
● ދ ި ވ ެ ހ ި ބ ަ ސ ް
● Ε λ λ η ν ι κ ά
● E m i l i à n e r u m a g n ò l
● E n g l i s h
● E s p e r a n t o
● E s p a ñ o l
● E e s t i
● E u s k a r a
● E s t r e m e ñ u
● ف ا ر س ی
● S u o m i
● V õ r o
● F ø r o y s k t
● F r a n ç a i s
● N o r d f r i i s k
● F u r l a n
● F r y s k
● G a e i l g e
● 贛 語
● G à i d h l i g
● G a l e g o
● A v a ñ e ' ẽ
● ગ ુ જ ર ા ત ી
● G a e l g
● H a k - k â - f a
● H a w a i ` i
● ע ב ר י ת
● ह ि न ् द ी
● F i j i H i n d i
● H r v a t s k i
● K r e y ò l a y i s y e n
● M a g y a r
● Հ ա յ ե ր ե ն
● I n t e r l i n g u a
● B a h a s a I n d o n e s i a
● I n t e r l i n g u e
● I g b o
● I l o k a n o
● I d o
● Í s l e n s k a
● I t a l i a n o
● 日 本 語
● L o j b a n
● B a s a J a w a
● ქ ა რ თ უ ლ ი
● T a q b a y l i t
● Қ а з а қ ш а
● K a l a a l l i s u t
● ភ ា ស ា ខ ្ ម ែ រ
● ಕ ನ ್ ನ ಡ
● 한 국 어
● К ъ а р а ч а й - м а л к ъ а р
● K u r d î
● К ы р г ы з ч а
● L a t i n a
● L a d i n o
● L ë t z e b u e r g e s c h
● Л е з г и
● L i m b u r g s
● L i g u r e
● L u m b a a r t
● ລ າ ວ
● L i e t u v i ų
● L a t v i e š u
● B a s a B a n y u m a s a n
● М о к ш е н ь
● M a l a g a s y
● О л ы к м а р и й
● М а к е д о н с к и
● മ ല യ ാ ള ം
● М о н г о л
● म र ा ठ ी
● B a h a s a M e l a y u
● M a l t i
● M i r a n d é s
● မ ြ န ် မ ာ ဘ ာ သ ာ
● Э р з я н ь
● N ā h u a t l
● P l a t t d ü ü t s c h
● N e d e r s a k s i e s
● न े प ा ल ी
● न े प ा ल भ ा ष ा
● N e d e r l a n d s
● N o r s k n y n o r s k
● N o r s k b o k m å l
● N o v i a l
● N o u o r m a n d
● D i n é b i z a a d
● O c c i t a n
● ଓ ଡ ଼ ି ଆ
● И р о н
● ਪ ੰ ਜ ਾ ਬ ੀ
● P a n g a s i n a n
● P i c a r d
● प ा ल ि
● P o l s k i
● P i e m o n t è i s
● پ ن ج ا ب ی
● پ ښ ت و
● P o r t u g u ê s
● R u n a S i m i
● R o m â n ă
● A r m ã n e a s h c e
● Р у с с к и й
● Р у с и н ь с к ы й
● स ं स ् क ृ त म ्
● С а х а т ы л а
● S a r d u
● S i c i l i a n u
● S c o t s
● S r p s k o h r v a t s k i / с р п с к о х р в а т с к и
● ස ි ං හ ල
● S i m p l e E n g l i s h
● S l o v e n č i n a
● S l o v e n š č i n a
● G a g a n a S a m o a
● C h i S h o n a
● S o o m a a l i g a
● S h q i p
● С р п с к и / s r p s k i
● S r a n a n t o n g o
● S i S w a t i
● S e e l t e r s k
● B a s a S u n d a
● S v e n s k a
● K i s w a h i l i
● Ś l ů n s k i
● த ம ி ழ ்
● త ె ల ు గ ు
● T e t u n
● Т о ҷ и к ӣ
● ไ ท ย
● T ü r k m e n ç e
● T a g a l o g
● T o k P i s i n
● T ü r k ç e
● X i t s o n g a
● Т а т а р ч а / t a t a r ç a
● У к р а ї н с ь к а
● ا ر د و
● O ʻ z b e k c h a
● V è n e t o
● T i ế n g V i ệ t
● V o l a p ü k
● W i n a r a y
● W o l o f
● 吴 语
● Х а л ь м г
● י י ִ ד י ש
● Y o r ù b á
● V a h c u e n g h
● 中 文
● 文 言
● 粵 語
● I s i Z u l u
● E d i t l i n k s
● C h i t i a ̍ h t ī 2 0 1 3 - n î 3 - g o e ̍ h 1 1 - j i ̍ t ( P à i - i t ) , 1 1 : 1 4 ū k á i - - k o è
● T e x t i s a v a i l a b l e u n d e r t h e C r e a t i v e C o m m o n s A t t r i b u t i o n / S h a r e - A l i k e L i c e n s e ;
a d d i t i o n a l t e r m s m a y a p p l y .
S e e T e r m s o f U s e f o r d e t a i l s .
● Í n - s u c h è n g - c h h e k
● K o a n - h ē W i k i p e d i a
● B ô - h ū - c h e k s e n g - b ê n g
● M o b i l e v i e w