(( 0 &&1)) # Logical AND echo $? # 1 *** # And so ... let "num = (( 0 &&1))" echo $num # 0 # But ... let "num = (( 0 &&1))" echo $? # 1 *** (( 200 || 11 )) # Logical OR echo $? # 0 *** # ... let "num = (( 200 || 11 ))" echo $num # 1 let "num = (( 200 || 11 ))" echo $? # 0 *** (( 200 | 11 )) # Bitwise OR echo $? # 0 *** # ... let "num = (( 200 | 11 ))" echo $num # 203 let "num = (( 200 | 11 ))" echo $? # 0 *** # The "let" construct returns the same exit status #+ as the double-parentheses arithmetic expansion. |
![]() | Again, note that the exit status of an arithmetic expression is not an error value.
|
if cmp a b &> /dev/null # Suppress output. then echo "Files a and b are identical." else echo "Files a and b differ." fi # The very useful "if-grep" construct: # ----------------------------------- if grep -q Bash file then echo "File contains at least one occurrence of Bash." fi word=Linux letter_sequence=inu if echo "$word" | grep -q "$letter_sequence" # The "-q" option to grep suppresses output. then echo "$letter_sequence found in $word" else echo "$letter_sequence not found in $word" fi if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED then echo "Command succeeded." else echo "Command failed." fi |
#!/bin/bash
# Tip:
# If you're unsure how a certain condition might evaluate,
#+ test it in an if-test.
echo
echo "Testing \"0\""
if [ 0 ] # zero
then
echo "0 is true."
else # Or else ...
echo "0 is false."
fi # 0 is true.
echo
echo "Testing \"1\""
if [1] # one
then
echo "1 is true."
else
echo "1 is false."
fi # 1 is true.
echo
echo "Testing \"-1\""
if [ -1 ] # minus one
then
echo "-1 is true."
else
echo "-1 is false."
fi # -1 is true.
echo
echo "Testing \"NULL\""
if [ ] # NULL (empty condition)
then
echo "NULL is true."
else
echo "NULL is false."
fi # NULL is false.
echo
echo "Testing \"xyz\""
if [ xyz ] # string
then
echo "Random string is true."
else
echo "Random string is false."
fi # Random string is true.
echo
echo "Testing \"\$xyz\""
if [ $xyz ] # Tests if $xyz is null, but...
# it's only an uninitialized variable.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
echo "Testing \"-n \$xyz\""
if [ -n "$xyz" ] # More pedantically correct.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
xyz= # Initialized, but set to null value.
echo "Testing \"-n \$xyz\""
if [ -n "$xyz" ]
then
echo "Null variable is true."
else
echo "Null variable is false."
fi # Null variable is false.
echo
# When is "false" true?
echo "Testing \"false\""
if [ "false" ] # It seems that "false" is just a string ...
then
echo "\"false\" is true." #+ and it tests true.
else
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\$false\"" # Again, uninitialized variable.
if [ "$false" ]
then
echo "\"\$false\" is true."
else
echo "\"\$false\" is false."
fi # "$false" is false.
# Now, we get the expected result.
# What would happen if we tested the uninitialized variable "$true"?
echo
exit 0 |
if [ condition-true ]
then
command 1
command 2
...
else # Or else ...
# Adds default code block executing if original condition tests false.
command 3
command 4
...
fi |
![]() | When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if and then are keywords. Keywords (or commands) begin statements, and before a new statement on the same line begins, the old one must terminate.
|
if [ condition1 ] then command1 command2 command3 elif [ condition2 ] # Same as else if then command4 command5 else default-command fi |
![]() | The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package. Likewise, [ does not call /usr/bin/[, which is linked to /usr/bin/test.
If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full pathname. |
#!/bin/bash echo if test -z "$1" then echo "No command-line arguments." else echo "First command-line argument is $1." fi echo if /usr/bin/test -z "$1" # Equivalent to "test" builtin. # ^^^^^^^^^^^^^ # Specifying full pathname. then echo "No command-line arguments." else echo "First command-line argument is $1." fi echo if [ -z "$1" ] # Functionally identical to above code blocks. # if [ -z "$1" should work, but... #+ Bash responds to a missing close-bracket with an error message. then echo "No command-line arguments." else echo "First command-line argument is $1." fi echo if /usr/bin/[ -z "$1" ] # Again, functionally identical to above. # if /usr/bin/[ -z "$1" # Works, but gives an error message. # # Note: # This has been fixed in Bash, version 3.x. then echo "No command-line arguments." else echo "First command-line argument is $1." fi echo exit 0 |
![]() | Following an if, neither the test command nor the test brackets ( [ ] or [[ ]] ) are strictly necessary.
Similarly, a condition within test brackets may stand alone without an if, when used in combination with a list construct.
|
#!/bin/bash # arith-tests.sh # Arithmetic tests. # The (( ... )) construct evaluates and tests numerical expressions. # Exit status opposite from [ ... ] construct! (( 0 )) echo "Exit status of \"(( 0 ))\" is $?." # 1 ((1)) echo "Exit status of \"((1))\" is $?." # 0 (( 5 >4)) # true echo "Exit status of \"(( 5 >4))\" is $?." # 0 (( 5 >9)) # false echo "Exit status of \"(( 5 >9))\" is $?." # 1 (( 5 == 5 )) # true echo "Exit status of \"(( 5 == 5 ))\" is $?." # 0 # (( 5 = 5 )) gives an error message. (( 5 - 5 )) # 0 echo "Exit status of \"(( 5 - 5 ))\" is $?." # 1 (( 5 / 4 )) # Division o.k. echo "Exit status of \"(( 5 / 4 ))\" is $?." # 0 (( 1 / 2 )) # Division result < 1. echo "Exit status of \"(( 1 / 2 ))\" is $?." # Rounded off to 0. # 1 (( 1 / 0 )) 2>/dev/null # Illegal division by 0. # ^^^^^^^^^^^ echo "Exit status of \"(( 1 / 0 ))\" is $?." # 1 # What effect does the "2>/dev/null" have? # What would happen if it were removed? # Try removing it, then rerunning the script. # ======================================= # # (( ... )) also useful in an if-then test. var1=5 var2=4 if (( var1 > var2 )) then #^ ^ Note: Not $var1, $var2. Why? echo "$var1 is greater than $var2" fi # 5 is greater than 4 exit 0 |
| [1] | Atoken is a symbol or short string with a special meaning attached to it (ameta-meaning). In Bash, certain tokens, such as [ and . (dot-command), may expand to keywords and commands. |